U-tiling: UQC4019
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1127 |
*22222 |
(3,5,2) |
{4,4,3} |
{5.5.5.5}{5.8.8.5}{5.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc3025
|
|
Fmmm |
69 |
orthorhombic |
{4,3,4} |
10 |
(3,5) |
G
|
False
|
|
sqc9166
|
|
Fddd |
70 |
orthorhombic |
{4,4,3} |
20 |
(3,6) |
D
|
False
|
|
sqc2943
|
|
Cmma |
67 |
orthorhombic |
{3,4,4} |
10 |
(3,5) |
Topological data
Vertex degrees | {4,4,3} |
2D vertex symbol | {5.5.5.5}{5.8.8.5}{5.8.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<46.3:144:73 3 5 7 26 90 91 12 14 16 35 108 109 21 23 25 126 127 30 32 34 144 100 39 41 43 62 99 82 48 50 52 71 81 136 57 59 61 135 118 66 68 70 117 75 77 79 116 84 86 88 125 93 95 97 134 102 104 106 143 111 113 115 120 122 124 129 131 133 138 140 142,2 4 77 8 9 11 13 95 17 18 20 22 113 26 27 29 31 131 35 36 38 40 104 44 45 47 49 86 53 54 56 58 140 62 63 65 67 122 71 72 74 76 80 81 83 85 89 90 92 94 98 99 101 103 107 108 110 112 116 117 119 121 125 126 128 130 134 135 137 139 143 144,37 11 12 6 7 17 81 46 15 16 99 55 29 30 24 25 35 117 64 33 34 135 47 48 42 43 53 108 51 52 90 65 66 60 61 71 144 69 70 126 100 92 93 78 79 98 91 101 102 87 88 107 96 97 105 106 136 128 129 114 115 134 127 137 138 123 124 143 132 133 141 142:5 8 5 8 5 5 5 8 5 8 5 5,4 4 3 3 4 4 3 3 4 3 3 4 3 3 4 4 4 4 4 4> {(1, 121): 'tau2^-1', (2, 62): 'tau3^-1', (2, 63): 't1', (0, 63): 'tau2', (1, 112): 'tau2', (2, 54): 't1', (0, 54): 'tau3^-1', (0, 53): 't3^-1', (0, 44): 't2^-1', (2, 35): 'tau3', (0, 27): 'tau3', (2, 26): 'tau2^-1', (0, 18): 'tau2^-1', (0, 17): 't2', (0, 8): 't3', (2, 142): 't2*tau1*t3^-1', (0, 142): 't2', (2, 137): 't2*tau1*t3^-1', (2, 136): 't2*tau1*t3^-1', (2, 135): 'tau3*t1*tau2^-1', (2, 128): 't2^-1*tau1^-1*t3', (2, 126): 'tau3^-1*t1^-1*tau2', (1, 58): 'tau3^-1', (0, 124): 't3', (0, 115): 't3^-1', (2, 109): 't3^-1*tau1*t2', (2, 106): 'tau1', (2, 133): 't2^-1*tau1^-1*t3', (2, 100): 'tau1', (2, 101): 'tau1', (0, 97): 't2', (2, 97): 'tau1^-1', (2, 92): 'tau1^-1', (1, 31): 'tau3', (2, 91): 'tau1^-1', (2, 71): 'tau2'}