U-tiling: UQC4058
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1172 |
*2224 |
(3,4,2) |
{8,12,4} |
{3.3.3.3.3.3.3.3}{3.3.3.3.3.3.3.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc8602
|
|
I4/mmm |
139 |
tetragonal |
{4,8,12} |
10 |
(3,4) |
G
|
False
|
|
sqc12644
|
|
I41/acd |
142 |
tetragonal |
{8,12,4} |
20 |
(3,5) |
D
|
False
|
|
sqc8561
|
|
P42/nnm |
134 |
tetragonal |
{4,8,12} |
10 |
(3,4) |
Topological data
Vertex degrees | {8,12,4} |
2D vertex symbol | {3.3.3.3.3.3.3.3}{3.3.3.3.3.3.3.3.3.3.3.3}{3.3.3.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<5.2:288:37 3 5 7 9 46 12 14 16 18 55 21 23 25 27 73 30 32 34 36 39 41 43 45 48 50 52 54 57 59 61 63 208 66 68 70 72 75 77 79 81 244 84 86 88 90 262 93 95 97 99 145 102 104 106 108 280 111 113 115 117 172 120 122 124 126 190 129 131 133 135 199 138 140 142 144 147 149 151 153 226 156 158 160 162 235 165 167 169 171 174 176 178 180 253 183 185 187 189 192 194 196 198 201 203 205 207 210 212 214 216 271 219 221 223 225 228 230 232 234 237 239 241 243 246 248 250 252 255 257 259 261 264 266 268 270 273 275 277 279 282 284 286 288,2 39 6 9 8 11 48 15 18 17 20 57 24 27 26 29 75 33 36 35 38 42 45 44 47 51 54 53 56 60 63 62 65 210 69 72 71 74 78 81 80 83 246 87 90 89 92 264 96 99 98 101 147 105 108 107 110 282 114 117 116 119 174 123 126 125 128 192 132 135 134 137 201 141 144 143 146 150 153 152 155 228 159 162 161 164 237 168 171 170 173 177 180 179 182 255 186 189 188 191 195 198 197 200 204 207 206 209 213 216 215 218 273 222 225 224 227 231 234 233 236 240 243 242 245 249 252 251 254 258 261 260 263 267 270 269 272 276 279 278 281 285 288 287,19 4 5 15 16 107 108 28 13 14 125 126 22 23 33 34 134 135 31 32 161 162 55 40 41 69 70 143 144 73 49 50 87 88 170 171 58 59 96 97 188 189 91 67 68 179 180 76 77 114 115 224 225 109 85 86 152 153 94 95 233 234 127 103 104 123 124 112 113 197 198 154 121 122 130 131 159 160 181 139 140 177 178 190 148 149 168 169 157 158 217 166 167 226 175 176 184 185 231 232 193 194 222 223 253 202 203 240 241 251 252 262 211 212 249 250 242 243 220 221 229 230 271 238 239 280 247 248 256 257 276 277 287 288 265 266 285 286 278 279 274 275 283 284:3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3,8 12 4 12 12 4 12 8 4 8 4 4 4 8 8 8 8 4 8 4> {(2, 188): 'tau2', (2, 61): 'tau2^-1', (2, 63): 't3^-1', (2, 180): 't3^-1', (2, 176): 't3^-1', (2, 177): 't3^-1', (2, 50): 't2', (2, 51): 't2', (2, 168): 't2', (2, 41): 't3', (2, 42): 't3', (1, 110): 't2', (2, 167): 't2', (2, 160): 't1', (2, 161): 't1', (2, 162): 't2', (2, 284): 'tau1*t3^-1', (2, 286): 't2^-1*tau3*t1*tau2^-1', (1, 218): 't2^-1', (2, 25): 't1^-1', (2, 26): 't1^-1', (2, 276): 'tau1^-1*t3', (2, 277): 't2*tau3^-1*t1^-1*tau2', (2, 278): 't2*tau3^-1*t1^-1*tau2', (0, 279): 't2^-1', (2, 275): 'tau1^-1*t3', (0, 270): 't2', (2, 267): 't3*tau1^-1', (2, 260): 'tau2*t1^-1*tau3^-1*t2', (2, 261): 't3', (2, 252): 't3^-1', (2, 248): 'tau1', (2, 249): 'tau1', (2, 116): 'tau3', (2, 240): 'tau1^-1', (2, 115): 'tau3', (2, 108): 't2', (2, 232): 'tau2', (2, 233): 'tau2', (2, 224): 'tau3^-1', (2, 79): 'tau3', (2, 203): 'tau1'}