U-tiling: UQC4063
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1174 |
*2323 |
(3,4,2) |
{12,9,4} |
{3.3.3.3.3.3.3.3.3.3.3.3}{3.3.3.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11598
|
|
P4232 |
208 |
cubic |
{12,9,4} |
14 |
(3,4) |
G
|
False
|
|
sqc11599
|
|
I213 |
199 |
cubic |
{12,9,4} |
14 |
(3,5) |
D
|
False
|
|
sqc11606
|
|
F-43m |
216 |
cubic |
{12,9,4} |
14 |
(3,4) |
Topological data
Vertex degrees | {12,9,4} |
2D vertex symbol | {3.3.3.3.3.3.3.3.3.3.3.3}{3.3.3.3.3.3.3.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<3.1:216:28 3 5 7 9 46 12 14 16 18 109 21 23 25 27 30 32 34 36 163 39 41 43 45 48 50 52 54 190 57 59 61 63 91 66 68 70 72 127 75 77 79 81 145 84 86 88 90 93 95 97 99 172 102 104 106 108 111 113 115 117 199 120 122 124 126 129 131 133 135 181 138 140 142 144 147 149 151 153 208 156 158 160 162 165 167 169 171 174 176 178 180 183 185 187 189 192 194 196 198 201 203 205 207 210 212 214 216,2 30 6 9 8 11 48 15 18 17 20 111 24 27 26 29 33 36 35 38 165 42 45 44 47 51 54 53 56 192 60 63 62 65 93 69 72 71 74 129 78 81 80 83 147 87 90 89 92 96 99 98 101 174 105 108 107 110 114 117 116 119 201 123 126 125 128 132 135 134 137 183 141 144 143 146 150 153 152 155 210 159 162 161 164 168 171 170 173 177 180 179 182 186 189 188 191 195 198 197 200 204 207 206 209 213 216 215,10 4 5 24 25 71 72 13 14 60 61 143 144 37 22 23 107 108 46 31 32 123 124 134 135 40 41 78 79 188 189 49 50 150 151 170 171 73 58 59 179 180 82 67 68 105 106 76 77 98 99 85 86 195 196 206 207 145 94 95 186 187 154 103 104 163 112 113 204 205 197 198 181 121 122 161 162 190 130 131 159 160 199 139 140 177 178 148 149 215 216 157 158 166 167 213 214 208 175 176 184 185 193 194 202 203 211 212:3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3,12 9 4 9 4 9 12 4 4 4 12 9 4 12> {(2, 63): 'tau3', (0, 63): 't1^-1', (2, 180): 'tau2', (2, 52): 't3', (2, 53): 't3', (2, 50): 'tau2^-1', (2, 51): 'tau2^-1', (0, 171): 't2^-1', (2, 168): 'tau1^-1', (1, 146): 't1*tau3', (2, 167): 'tau1^-1', (1, 101): 't2', (2, 161): 'tau3*t1', (2, 34): 't1^-1', (2, 35): 't1^-1', (2, 158): 'tau3', (0, 153): 't2', (2, 152): 'tau2*t3*tau1^-1', (1, 92): 't1', (1, 209): 't2^-1', (2, 151): 'tau2*t3*tau1^-1', (1, 200): 'tau1^-1*t3*tau2', (2, 132): 'tau3^-1', (2, 135): 'tau1', (0, 135): 't3', (2, 124): 't1^-1*tau3^-1', (2, 116): 't2', (1, 182): 't3^-1', (0, 117): 'tau2^-1*t3^-1*tau1', (2, 115): 't2', (2, 88): 't2^-1', (2, 89): 't2^-1', (0, 81): 'tau3^-1*t1^-1'}