U-tiling: UQC4082
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1187 |
*2224 |
(3,4,2) |
{8,3,8} |
{6.3.3.6.6.3.3.6}{6.3.3}{3.3.3.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc2423
|
|
P4/mmm |
123 |
tetragonal |
{8,3,8} |
7 |
(3,4) |
G
|
False
|
|
sqc12640
|
|
I41/acd |
142 |
tetragonal |
{8,3,8} |
28 |
(3,5) |
D
|
False
|
|
sqc8930
|
|
P42/nnm |
134 |
tetragonal |
{8,8,3} |
14 |
(3,4) |
Topological data
Vertex degrees | {8,3,8} |
2D vertex symbol | {6.3.3.6.6.3.3.6}{6.3.3}{3.3.3.3.3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<9.2:288:19 3 5 7 9 28 12 14 16 18 21 23 25 27 30 32 34 36 55 39 41 43 45 73 48 50 52 54 57 59 61 63 91 66 68 70 72 75 77 79 81 109 84 86 88 90 93 95 97 99 127 102 104 106 108 111 113 115 117 154 120 122 124 126 129 131 133 135 181 138 140 142 144 190 147 149 151 153 156 158 160 162 217 165 167 169 171 226 174 176 178 180 183 185 187 189 192 194 196 198 253 201 203 205 207 262 210 212 214 216 219 221 223 225 228 230 232 234 271 237 239 241 243 280 246 248 250 252 255 257 259 261 264 266 268 270 273 275 277 279 282 284 286 288,2 39 6 9 8 11 48 15 18 17 20 57 24 27 26 29 75 33 36 35 38 42 45 44 47 51 54 53 56 60 63 62 65 210 69 72 71 74 78 81 80 83 246 87 90 89 92 264 96 99 98 101 147 105 108 107 110 282 114 117 116 119 174 123 126 125 128 192 132 135 134 137 201 141 144 143 146 150 153 152 155 228 159 162 161 164 237 168 171 170 173 177 180 179 182 255 186 189 188 191 195 198 197 200 204 207 206 209 213 216 215 218 273 222 225 224 227 231 234 233 236 240 243 242 245 249 252 251 254 258 261 260 263 267 270 269 272 276 279 278 281 285 288 287,10 4 5 105 106 44 45 13 14 123 124 53 54 28 22 23 132 133 62 63 31 32 159 160 80 81 64 40 41 141 142 82 49 50 168 169 91 58 59 186 187 67 68 177 178 215 216 109 76 77 222 223 85 86 150 151 251 252 94 95 231 232 269 270 118 103 104 152 153 112 113 195 196 287 288 121 122 179 180 154 130 131 197 198 172 139 140 206 207 163 148 149 157 158 233 234 166 167 242 243 175 176 226 184 185 260 261 217 193 194 235 202 203 249 250 244 211 212 240 241 220 221 278 279 229 230 238 239 247 248 271 256 257 285 286 280 265 266 276 277 274 275 283 284:6 3 6 3 3 3 3 3 3 6 3 3 6 3 3 6 3 3 6 3 3 6 3 3 3 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3,8 3 8 3 8 8 3 8 3 8 8 8 8 3 8 3 3 3 3 3 3 3 3 3 3 8 3 8> {(2, 60): 'tau2^-1', (2, 63): 't3^-1', (2, 185): 'tau2', (2, 171): 't3^-1', (0, 108): 't2', (0, 180): 't3^-1', (2, 45): 't2', (1, 110): 't2', (2, 32): 't1^-1', (2, 33): 't1^-1', (2, 162): 't2', (0, 63): 't3^-1', (2, 284): 't2^-1*tau3*t1*tau2^-1', (2, 285): 't2^-1*tau3*t1*tau2^-1', (2, 286): 't2^-1', (1, 218): 't2^-1', (2, 24): 't1^-1', (2, 23): 't1^-1', (2, 276): 't2*tau3^-1*t1^-1*tau2', (2, 277): 't2', (2, 278): 't2', (2, 279): 'tau1*t3^-1', (2, 275): 't2*tau3^-1*t1^-1*tau2', (2, 270): 'tau1^-1*t3', (0, 252): 't3^-1', (2, 116): 't2', (2, 113): 'tau3', (2, 114): 'tau3', (2, 243): 'tau1', (2, 234): 'tau1^-1', (2, 231): 'tau2', (2, 221): 'tau3^-1', (2, 222): 'tau3^-1', (2, 95): 'tau2^-1', (0, 207): 't3^-1', (0, 216): 't2^-1'}