U-tiling: UQC4100
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1193 |
*2323 |
(3,4,2) |
{4,6,6} |
{9.3.3.9}{9.3.3.9.3.3}{3.3.3.3.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11653
|
|
P4232 |
208 |
cubic |
{4,6,6} |
22 |
(3,4) |
G
|
False
|
|
sqc11651
|
|
I213 |
199 |
cubic |
{4,6,6} |
22 |
(3,5) |
D
|
False
|
|
sqc11650
|
|
F-43m |
216 |
cubic |
{4,6,6} |
22 |
(3,4) |
Topological data
Vertex degrees | {4,6,6} |
2D vertex symbol | {9.3.3.9}{9.3.3.9.3.3}{3.3.3.3.3.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<4.1:216:28 3 5 7 9 46 12 14 16 18 109 21 23 25 27 30 32 34 36 163 39 41 43 45 48 50 52 54 190 57 59 61 63 91 66 68 70 72 127 75 77 79 81 145 84 86 88 90 93 95 97 99 172 102 104 106 108 111 113 115 117 199 120 122 124 126 129 131 133 135 181 138 140 142 144 147 149 151 153 208 156 158 160 162 165 167 169 171 174 176 178 180 183 185 187 189 192 194 196 198 201 203 205 207 210 212 214 216,2 66 6 9 8 11 138 15 18 17 20 102 24 27 26 29 129 33 36 35 38 183 42 45 44 47 165 51 54 53 56 174 60 63 62 65 69 72 71 74 93 78 81 80 83 201 87 90 89 92 96 99 98 101 105 108 107 110 192 114 117 116 119 156 123 126 125 128 132 135 134 137 141 144 143 146 210 150 153 152 155 159 162 161 164 168 171 170 173 177 180 179 182 186 189 188 191 195 198 197 200 204 207 206 209 213 216 215,10 4 5 15 16 26 27 13 14 62 63 37 22 23 42 43 46 31 32 51 52 125 126 40 41 80 81 49 50 152 153 73 58 59 78 79 82 67 68 87 88 107 108 76 77 85 86 197 198 145 94 95 150 151 188 189 154 103 104 159 160 163 112 113 168 169 206 207 181 121 122 186 187 190 130 131 195 196 161 162 199 139 140 204 205 179 180 148 149 157 158 166 167 215 216 208 175 176 213 214 184 185 193 194 202 203 211 212:9 3 9 3 9 3 3 3 3 3 3 3 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3,4 6 6 6 4 4 6 6 6 6 4 4 6 6 4 4 4 6 4 4 4 4> {(2, 63): 'tau3', (0, 63): 't1^-1', (2, 186): 'tau2', (2, 180): 'tau2', (2, 53): 'tau2^-1', (2, 52): 'tau2^-1', (1, 119): 't1^-1*tau3^-1', (0, 171): 't2^-1', (2, 169): 'tau1^-1', (2, 170): 'tau1^-1', (1, 110): 't2', (2, 160): 'tau3', (2, 161): 'tau3', (2, 185): 'tau2', (0, 153): 't2', (1, 209): 'tau1*t3^-1*tau2^-1', (1, 83): 't2^-1', (2, 140): 'tau1', (2, 141): 'tau1', (2, 135): 'tau1', (0, 135): 't3', (0, 117): 'tau2^-1*t3^-1*tau1', (1, 47): 't3', (1, 29): 't1^-1', (2, 86): 'tau3^-1', (0, 81): 'tau3^-1*t1^-1', (2, 69): 'tau3'}