U-tiling: UQC4120
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1442 |
*22222 |
(3,6,2) |
{4,4,4} |
{6.4.4.6}{6.6.4.4}{6.6.6.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc3091
|
|
Fmmm |
69 |
orthorhombic |
{4,3,4} |
10 |
(3,6) |
G
|
False
|
|
sqc9623
|
|
Fddd |
70 |
orthorhombic |
{4,4,4} |
20 |
(3,7) |
D
|
False
|
|
sqc3876
|
|
Cmma |
67 |
orthorhombic |
{4,4,4} |
10 |
(3,6) |
Topological data
Vertex degrees | {4,4,4} |
2D vertex symbol | {6.4.4.6}{6.6.4.4}{6.6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<50.2:160:91 3 5 46 47 9 100 111 13 15 56 57 19 120 131 23 25 66 67 29 140 151 33 35 76 77 39 160 101 43 45 49 110 81 53 55 59 90 141 63 65 69 150 121 73 75 79 130 83 85 116 117 89 93 95 106 107 99 103 105 109 113 115 119 123 125 156 157 129 133 135 146 147 139 143 145 149 153 155 159,2 8 6 7 10 12 18 16 17 20 22 28 26 27 30 32 38 36 37 40 42 48 46 47 50 52 58 56 57 60 62 68 66 67 70 72 78 76 77 80 82 88 86 87 90 92 98 96 97 100 102 108 106 107 110 112 118 116 117 120 122 128 126 127 130 132 138 136 137 140 142 148 146 147 150 152 158 156 157 160,81 4 5 86 17 18 19 30 101 14 15 106 40 121 24 25 126 37 38 39 141 34 35 146 111 44 45 116 57 58 59 70 91 54 55 96 80 151 64 65 156 77 78 79 131 74 75 136 84 85 107 108 109 130 94 95 117 118 119 140 104 105 150 114 115 160 124 125 147 148 149 134 135 157 158 159 144 145 154 155:6 4 6 4 6 4 6 4 6 6 6 6 4 4 4 4,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 60): 'tau3^-1', (0, 59): 't3^-1', (0, 50): 't3^-1', (0, 49): 't2^-1', (0, 40): 't2^-1', (0, 35): 't1^-1', (0, 36): 't1^-1', (2, 35): 'tau3', (0, 26): 't1^-1', (0, 155): 'tau3*t1*tau2^-1', (2, 158): 't2*tau1*t3^-1', (0, 25): 't1^-1', (2, 25): 'tau2^-1', (0, 156): 'tau3*t1*tau2^-1', (2, 155): 'tau3', (2, 20): 'tau2^-1', (0, 19): 't2', (0, 145): 'tau3^-1*t1^-1*tau2', (2, 146): 't2^-1*tau1^-1*t3', (2, 147): 't2^-1*tau1^-1*t3', (0, 10): 't2', (0, 9): 't3', (2, 136): 't3*tau1^-1*t2^-1', (2, 137): 't3*tau1^-1*t2^-1', (2, 139): 't3', (0, 0): 't3', (2, 128): 't3^-1*tau1*t2', (2, 130): 'tau2^-1', (2, 116): 'tau1', (2, 117): 'tau1', (2, 119): 't2^-1', (2, 30): 'tau3', (2, 108): 'tau1^-1', (2, 109): 't2', (2, 106): 'tau1^-1', (2, 107): 'tau1^-1', (2, 98): 'tau1^-1', (2, 89): 't3', (0, 146): 'tau3^-1*t1^-1*tau2', (2, 75): 'tau2'}