U-tiling: UQC4223
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc899 |
*2323 |
(4,3,2) |
{3,3,6,3} |
{4.4.4}{4.8.4}{4.8.8.4.8.8}{8.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11079
|
|
P4232 |
208 |
cubic |
{3,3,6,3} |
26 |
(4,3) |
G
|
False
|
|
sqc11080
|
|
I213 |
199 |
cubic |
{3,3,6,3} |
26 |
(4,4) |
D
|
False
|
|
sqc11081
|
|
F-43m |
216 |
cubic |
{3,3,6,3} |
26 |
(4,3) |
Topological data
Vertex degrees | {3,3,6,3} |
2D vertex symbol | {4.4.4}{4.8.4}{4.8.8.4.8.8}{8.8.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<39.1:192:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192,25 3 28 61 7 24 41 11 44 125 15 56 97 19 100 93 23 27 117 31 112 145 35 148 165 39 72 43 149 47 136 169 51 172 157 55 81 59 84 63 96 113 67 116 85 71 129 75 132 181 79 176 83 87 168 153 91 156 95 99 173 103 184 177 107 180 141 111 115 119 144 161 123 164 127 160 131 189 135 185 139 188 143 147 151 192 155 159 163 167 171 175 179 183 187 191,57 58 5 6 15 16 121 122 13 14 89 90 21 22 39 40 113 114 29 30 47 48 161 162 37 38 145 146 45 46 153 154 53 54 71 72 61 62 79 80 81 82 69 70 177 178 77 78 85 86 135 136 93 94 143 144 169 170 101 102 151 152 137 138 109 110 167 168 117 118 175 176 125 126 183 184 185 186 133 134 141 142 149 150 157 158 191 192 165 166 173 174 181 182 189 190:4 8 4 8 4 8 4 8 8 4 4 4 4 8 4 4 4 4,3 3 6 3 3 3 3 3 6 3 3 3 3 3 6 6 3 3 3 3 6 3 3 3 6 3> {(1, 120): 't3', (2, 62): 'tau3', (2, 63): 'tau3', (2, 184): 'tau1*t3^-1*tau2^-1', (2, 185): 'tau1*t3^-1*tau2^-1', (2, 182): 'tau1^-1', (2, 183): 'tau1^-1', (2, 176): 't2', (1, 123): 't3', (1, 119): 'tau3^-1', (1, 104): 'tau2^-1*t3^-1*tau1', (1, 107): 'tau2^-1*t3^-1*tau1', (2, 40): 't3', (2, 41): 't3', (2, 166): 'tau2', (2, 167): 'tau2', (1, 100): 't2', (1, 88): 't2', (1, 91): 't2', (2, 24): 't1^-1', (2, 25): 't1^-1', (1, 80): 't1', (1, 83): 't1', (1, 72): 'tau3^-1*t1^-1', (1, 75): 'tau3^-1*t1^-1', (2, 136): 'tau3*t1', (1, 76): 't2^-1', (1, 184): 't2^-1', (1, 187): 't2^-1', (1, 188): 'tau1*t3^-1*tau2^-1', (1, 191): 'tau1', (1, 116): 't1', (2, 177): 't2', (2, 105): 't1^-1*tau3^-1', (1, 47): 'tau2^-1', (2, 96): 't2', (1, 148): 't3^-1', (1, 140): 'tau3*t1', (2, 169): 't2^-1'}