U-tiling: UQC4297
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1153 |
*2323 |
(4,4,2) |
{3,3,4,3} |
{9.6.9}{9.6.6}{6.6.6.6}{6.6.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11716
|
|
P4232 |
208 |
cubic |
{3,3,4,3} |
34 |
(4,4) |
G
|
False
|
|
sqc11717
|
|
I213 |
199 |
cubic |
{3,3,4,3} |
34 |
(4,5) |
D
|
False
|
|
sqc11713
|
|
F-43m |
216 |
cubic |
{3,3,4,3} |
34 |
(4,4) |
Topological data
Vertex degrees | {3,3,4,3} |
2D vertex symbol | {9.6.9}{9.6.6}{6.6.6.6}{6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<45.1:216:28 3 5 7 9 46 12 14 16 18 109 21 23 25 27 30 32 34 36 163 39 41 43 45 48 50 52 54 190 57 59 61 63 91 66 68 70 72 127 75 77 79 81 145 84 86 88 90 93 95 97 99 172 102 104 106 108 111 113 115 117 199 120 122 124 126 129 131 133 135 181 138 140 142 144 147 149 151 153 208 156 158 160 162 165 167 169 171 174 176 178 180 183 185 187 189 192 194 196 198 201 203 205 207 210 212 214 216,2 66 13 6 8 18 11 138 15 17 20 102 40 24 26 45 29 129 49 33 35 54 38 183 42 44 47 165 51 53 56 174 76 60 62 81 65 85 69 71 90 74 93 78 80 83 201 87 89 92 148 96 98 153 101 157 105 107 162 110 192 166 114 116 171 119 156 184 123 125 189 128 193 132 134 198 137 202 141 143 207 146 210 150 152 155 159 161 164 168 170 173 211 177 179 216 182 186 188 191 195 197 200 204 206 209 213 215,10 4 5 69 70 26 27 13 14 141 142 62 63 37 22 23 105 106 46 31 32 132 133 125 126 40 41 186 187 80 81 49 50 168 169 152 153 73 58 59 177 178 82 67 68 107 108 76 77 96 97 85 86 204 205 197 198 145 94 95 188 189 154 103 104 163 112 113 195 196 206 207 181 121 122 159 160 190 130 131 161 162 199 139 140 179 180 148 149 213 214 157 158 166 167 215 216 208 175 176 184 185 193 194 202 203 211 212:9 6 9 9 6 6 6 6 9 6 6 6 6 6 6 6,3 3 4 3 3 4 3 3 3 3 4 3 3 4 3 4 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3> {(1, 120): 'tau2^-1', (2, 63): 'tau3', (1, 125): 'tau2^-1', (0, 63): 't1^-1', (2, 180): 'tau2', (2, 53): 'tau2^-1', (2, 50): 't3', (2, 51): 't3', (0, 171): 't2^-1', (2, 169): 'tau1^-1', (2, 170): 'tau1^-1', (1, 110): 't2', (2, 32): 't1^-1', (2, 33): 't1^-1', (1, 89): 'tau3^-1', (2, 158): 'tau3*t1', (0, 153): 't2', (1, 200): 't2', (1, 209): 'tau1*t3^-1*tau2^-1', (2, 149): 'tau2*t3*tau1^-1', (2, 150): 'tau2*t3*tau1^-1', (1, 84): 'tau3^-1', (2, 161): 'tau3', (1, 201): 'tau1^-1', (2, 52): 'tau2^-1', (1, 206): 'tau1^-1', (2, 133): 'tau3^-1', (2, 135): 'tau1', (0, 135): 't3', (2, 123): 't1^-1*tau3^-1', (2, 113): 't2', (2, 114): 't2', (0, 117): 'tau2^-1*t3^-1*tau1', (1, 47): 't3', (1, 155): 'tau3*t1', (1, 29): 't1^-1', (2, 86): 't2^-1', (2, 87): 't2^-1', (0, 144): 't1*tau3'}