U-tiling: UQC4328
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1210 |
*2244 |
(4,4,2) |
{4,12,3,4} |
{5.5.5.5}{5.4.5.5.4.5.5.4.5.5.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc8284
|
|
P42/mmc |
131 |
tetragonal |
{3,12,3,4} |
16 |
(4,4) |
G
|
False
|
|
sqc8755
|
|
I-42d |
122 |
tetragonal |
{4,12,3,4} |
16 |
(4,5) |
D
|
False
|
|
sqc2886
|
|
P-42m |
111 |
tetragonal |
{4,3,12,4} |
8 |
(4,4) |
Topological data
Vertex degrees | {4,12,3,4} |
2D vertex symbol | {5.5.5.5}{5.4.5.5.4.5.5.4.5.5.4.5}{5.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<85.1:144:55 3 5 7 9 64 12 14 16 18 28 21 23 25 27 30 32 34 36 46 39 41 43 45 48 50 52 54 57 59 61 63 66 68 70 72 127 75 77 79 81 136 84 86 88 90 100 93 95 97 99 102 104 106 108 118 111 113 115 117 120 122 124 126 129 131 133 135 138 140 142 144,2 4 59 24 8 27 11 13 68 33 17 36 20 22 32 26 29 31 35 38 40 50 60 44 63 47 49 69 53 72 56 58 62 65 67 71 74 76 131 96 80 99 83 85 140 105 89 108 92 94 104 98 101 103 107 110 112 122 132 116 135 119 121 141 125 144 128 130 134 137 139 143,73 11 12 6 7 62 63 82 15 16 71 72 91 38 39 24 25 35 36 100 47 48 33 34 109 42 43 53 54 118 51 52 127 65 66 60 61 136 69 70 83 84 78 79 134 135 87 88 143 144 110 111 96 97 107 108 119 120 105 106 114 115 125 126 123 124 137 138 132 133 141 142:5 4 5 4 5 5 4 4 5 4 5 4 5 5 4 4,4 12 3 4 3 4 3 4 3 4 12 3 4 3 3 3> {(1, 122): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (1, 125): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (0, 63): 't3^-1*tau2^-1*t1', (1, 113): 'tau1', (2, 16): 't1^-1*tau2*t3', (1, 116): 'tau1', (1, 104): 'tau3^-1', (2, 46): 't3*tau2*t1^-1', (2, 47): 't3*tau2*t1^-1', (1, 98): 't2^-1', (1, 89): 'tau3', (1, 95): 't2^-1', (1, 85): 't1^-1*tau2*t3', (2, 17): 't1^-1*tau2*t3', (2, 142): 't3^-1*tau2^-1*t1', (1, 67): 't3^-1*tau2^-1*t1', (1, 68): 't3^-1*tau2^-1*t3^-1', (1, 71): 't3^-1*tau2^-1*t3^-1', (1, 59): 't3^-1', (1, 62): 't3^-1', (2, 118): 't3*tau2*t1^-1', (2, 119): 't3*tau2*t1^-1', (1, 32): 't1', (1, 35): 't1', (2, 89): 't1^-1*tau2*t3', (0, 81): 't1^-1*tau2*t3'}