U-tiling: UQC4340
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1219 |
*2323 |
(4,4,2) |
{6,3,3,3} |
{5.5.5.5.5.5}{5.8.5}{5.8.8}{8.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11665
|
|
P4232 |
208 |
cubic |
{6,3,3,3} |
32 |
(4,4) |
G
|
False
|
|
sqc11660
|
|
I213 |
199 |
cubic |
{6,3,3,3} |
32 |
(4,5) |
D
|
False
|
|
sqc11649
|
|
F-43m |
216 |
cubic |
{6,3,3,3} |
32 |
(4,4) |
Topological data
Vertex degrees | {6,3,3,3} |
2D vertex symbol | {5.5.5.5.5.5}{5.8.5}{5.8.8}{8.8.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<48.1:216:28 3 5 7 9 46 12 14 16 18 109 21 23 25 27 30 32 34 36 163 39 41 43 45 48 50 52 54 190 57 59 61 63 91 66 68 70 72 127 75 77 79 81 145 84 86 88 90 93 95 97 99 172 102 104 106 108 111 113 115 117 199 120 122 124 126 129 131 133 135 181 138 140 142 144 147 149 151 153 208 156 158 160 162 165 167 169 171 174 176 178 180 183 185 187 189 192 194 196 198 201 203 205 207 210 212 214 216,2 4 32 24 8 72 11 13 50 60 17 144 20 22 113 26 108 29 31 123 35 135 38 40 167 78 44 189 47 49 150 53 171 56 58 194 62 180 65 67 95 105 71 74 76 131 80 99 83 85 149 195 89 207 92 94 186 98 101 103 176 107 110 112 204 116 198 119 121 203 125 162 128 130 159 134 137 139 185 177 143 146 148 152 216 155 157 212 161 164 166 213 170 173 175 179 182 184 188 191 193 197 200 202 206 209 211 215,10 20 21 6 7 35 36 56 57 15 16 53 54 37 24 25 116 117 46 119 120 33 34 74 75 42 43 170 171 146 147 51 52 73 60 61 197 198 82 101 102 69 70 98 99 78 79 134 135 191 192 87 88 152 153 145 182 183 96 97 154 105 106 179 180 163 200 201 114 115 181 123 124 206 207 190 155 156 132 133 199 173 174 141 142 188 189 150 151 159 160 215 216 209 210 168 169 208 177 178 186 187 195 196 204 205 213 214:5 8 5 8 5 8 5 8 8 5 5 5 5 8 5 5 5 5,6 3 3 3 3 3 3 3 3 6 3 3 3 3 3 6 3 3 3 3 3 3 3 3 6 3 3 3 3 3 3 3> {(1, 121): 'tau2^-1*t3^-1*tau1', (2, 188): 't3^-1', (2, 63): 'tau3', (1, 125): 't1^-1*tau3^-1', (0, 63): 't1^-1', (2, 187): 't3^-1', (2, 180): 'tau2', (1, 116): 't2', (0, 180): 't3^-1', (2, 46): 'tau2^-1', (2, 47): 'tau2^-1', (2, 160): 't2', (2, 161): 't2', (1, 103): 't2', (2, 163): 'tau1^-1', (1, 89): 't2^-1', (0, 153): 't2', (2, 152): 't1*tau3', (2, 154): 'tau3', (1, 94): 't1', (1, 211): 't2^-1', (2, 151): 't1*tau3', (1, 85): 'tau3^-1*t1^-1', (1, 212): 'tau1', (0, 81): 'tau3^-1*t1^-1', (2, 135): 'tau1', (2, 124): 'tau2^-1*t3^-1*tau1', (2, 125): 'tau2^-1*t3^-1*tau1', (1, 53): 't3', (0, 117): 'tau2^-1*t3^-1*tau1', (2, 106): 't2', (2, 107): 't2', (0, 99): 't2', (1, 35): 't1^-1', (2, 97): 't1', (2, 98): 't1', (1, 152): 'tau2*t3*tau1^-1', (1, 158): 'tau3', (2, 155): 'tau3', (1, 149): 'tau2', (2, 209): 'tau1', (1, 139): 't3'}