U-tiling: UQC4374
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1232 |
*222222 |
(4,4,2) |
{4,4,3,4} |
{14.14.14.14}{14.14.14.14}{14.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
G
|
False
|
|
sqc2831
|
|
I212121 |
24 |
orthorhombic |
{4,4,3,4} |
10 |
(4,5) |
D
|
False
|
|
sqc285
|
|
Pmmm |
47 |
orthorhombic |
{4,4,3,4} |
5 |
(4,4) |
Topological data
Vertex degrees | {4,4,3,4} |
2D vertex symbol | {14.14.14.14}{14.14.14.14}{14.4.14}{14.4.14.4} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<46.1:72:10 3 5 7 9 12 14 16 18 28 21 23 25 27 30 32 34 36 46 39 41 43 45 48 50 52 54 64 57 59 61 63 66 68 70 72,2 4 6 43 17 27 11 13 15 52 36 20 22 24 61 35 29 31 33 70 38 40 42 53 63 47 49 51 72 56 58 60 71 65 67 69,19 38 39 13 14 8 9 28 47 48 17 18 56 57 31 32 26 27 65 66 35 36 55 49 50 44 45 64 53 54 67 68 62 63 71 72:14 4 14 4,4 4 3 4 4 4 4 3 3 3> {(2, 63): 't1^-1', (0, 63): 't1^-1*tau3^-1*t2', (2, 58): 't3*tau2', (2, 46): 't1', (2, 47): 't1', (0, 45): 'tau3^-1*t2', (2, 57): 't3*tau2', (2, 30): 'tau2^-1*t3^-1', (2, 31): 'tau2^-1*t3^-1', (2, 12): 't1^-1', (2, 13): 't1^-1', (1, 69): 't1^-1*tau3^-1*t2*tau1*t3^-1', (1, 71): 'tau2^-1*t3^-1*tau1*t2', (1, 61): 't3*tau2', (1, 60): 'tau1*t3^-1', (1, 62): 'tau1*t2', (1, 51): 'tau3^-1', (1, 42): 't2^-1', (1, 35): 'tau2^-1*t1', (1, 34): 'tau2^-1*t3^-1', (1, 26): 't3', (1, 16): 't1^-1'}