U-tiling: UQC4380
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1235 |
*2323 |
(4,4,2) |
{6,3,3,3} |
{7.7.7.7.7.7}{7.4.7}{7.7.4}{7.7.7} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11668
|
|
P4232 |
208 |
cubic |
{6,3,3,3} |
32 |
(4,4) |
G
|
False
|
|
sqc11659
|
|
I213 |
199 |
cubic |
{6,3,3,3} |
32 |
(4,5) |
D
|
False
|
|
sqc11648
|
|
F-43m |
216 |
cubic |
{6,3,3,3} |
32 |
(4,4) |
Topological data
Vertex degrees | {6,3,3,3} |
2D vertex symbol | {7.7.7.7.7.7}{7.4.7}{7.7.4}{7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<49.1:216:28 3 5 7 9 46 12 14 16 18 109 21 23 25 27 30 32 34 36 163 39 41 43 45 48 50 52 54 190 57 59 61 63 91 66 68 70 72 127 75 77 79 81 145 84 86 88 90 93 95 97 99 172 102 104 106 108 111 113 115 117 199 120 122 124 126 129 131 133 135 181 138 140 142 144 147 149 151 153 208 156 158 160 162 165 167 169 171 174 176 178 180 183 185 187 189 192 194 196 198 201 203 205 207 210 212 214 216,2 4 8 24 70 36 11 13 17 60 142 54 20 22 26 106 117 29 31 35 123 133 38 40 44 78 187 171 47 49 53 150 169 56 58 62 178 198 65 67 71 105 99 74 76 80 97 135 83 85 89 195 205 153 92 94 98 186 101 103 107 180 110 112 116 204 196 119 121 125 160 207 128 130 134 159 137 139 143 177 189 146 148 152 214 155 157 161 216 164 166 170 213 173 175 179 182 184 188 191 193 197 200 202 206 209 211 215,10 20 21 6 7 71 72 56 57 15 16 143 144 37 24 25 107 108 46 119 120 33 34 134 135 74 75 42 43 188 189 146 147 51 52 170 171 73 60 61 179 180 82 101 102 69 70 78 79 98 99 191 192 87 88 206 207 145 182 183 96 97 154 105 106 163 200 201 114 115 197 198 181 123 124 161 162 190 155 156 132 133 199 173 174 141 142 150 151 215 216 159 160 209 210 168 169 208 177 178 186 187 195 196 204 205 213 214:7 4 7 4 7 4 7 4 4 7 7 7 7 4 7 7 7 7,6 3 3 3 3 3 3 3 3 6 3 3 3 3 3 3 3 6 3 3 3 3 3 3 6 3 3 3 3 3 3 3> {(1, 123): 't1^-1*tau3^-1', (2, 63): 'tau3', (1, 125): 'tau2^-1*t3^-1*tau1', (0, 63): 't1^-1', (2, 180): 'tau2', (2, 53): 't3', (1, 114): 't2', (0, 180): 't3^-1', (1, 107): 't2', (2, 47): 'tau2^-1', (1, 87): 't2^-1', (1, 98): 't1', (2, 160): 'tau3*t1', (2, 161): 'tau3*t1', (2, 34): 't1^-1', (2, 35): 't1^-1', (1, 89): 'tau3^-1*t1^-1', (0, 153): 't2', (2, 152): 'tau2*t3*tau1^-1', (2, 154): 'tau3', (2, 155): 'tau3', (2, 151): 'tau2*t3*tau1^-1', (1, 213): 'tau1*t3^-1*tau2^-1', (1, 212): 'tau1', (1, 215): 't2^-1', (2, 52): 't3', (2, 46): 'tau2^-1', (2, 163): 'tau1^-1', (1, 188): 't3^-1', (2, 116): 't2', (1, 51): 't3', (1, 50): 'tau2^-1', (2, 115): 't2', (1, 33): 't1^-1', (0, 99): 't2', (0, 117): 'tau2^-1*t3^-1*tau1', (2, 135): 'tau1', (2, 88): 't2^-1', (2, 89): 't2^-1', (0, 81): 'tau3^-1*t1^-1', (2, 209): 'tau1', (1, 131): 'tau3^-1'}