U-tiling: UQC4408
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1254 |
*2323 |
(4,4,2) |
{4,6,3,3} |
{5.4.4.5}{5.5.4.5.5.4}{4.4.4}{5.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11676
|
|
P4232 |
208 |
cubic |
{4,6,3,3} |
26 |
(4,4) |
G
|
False
|
|
sqc11677
|
|
I213 |
199 |
cubic |
{4,6,3,3} |
26 |
(4,5) |
D
|
False
|
|
sqc11678
|
|
F-43m |
216 |
cubic |
{4,6,3,3} |
26 |
(4,4) |
Topological data
Vertex degrees | {4,6,3,3} |
2D vertex symbol | {5.4.4.5}{5.5.4.5.5.4}{4.4.4}{5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<52.1:216:28 3 5 7 9 46 12 14 16 18 109 21 23 25 27 30 32 34 36 163 39 41 43 45 48 50 52 54 190 57 59 61 63 91 66 68 70 72 127 75 77 79 81 145 84 86 88 90 93 95 97 99 172 102 104 106 108 111 113 115 117 199 120 122 124 126 129 131 133 135 181 138 140 142 144 147 149 151 153 208 156 158 160 162 165 167 169 171 174 176 178 180 183 185 187 189 192 194 196 198 201 203 205 207 210 212 214 216,2 8 6 23 25 36 11 17 15 59 61 54 20 26 24 117 29 35 33 122 124 38 44 42 77 79 171 47 53 51 149 151 56 62 60 198 65 71 69 104 106 99 74 80 78 135 83 89 87 194 196 153 92 98 96 185 187 101 107 105 180 110 116 114 203 205 119 125 123 207 128 134 132 158 160 137 143 141 176 178 189 146 152 150 155 161 159 216 164 170 168 212 214 173 179 177 182 188 186 191 197 195 200 206 204 209 215 213,10 4 5 15 16 71 72 13 14 143 144 37 22 23 42 43 107 108 46 31 32 51 52 134 135 40 41 188 189 49 50 170 171 73 58 59 78 79 179 180 82 67 68 87 88 76 77 98 99 85 86 206 207 145 94 95 150 151 154 103 104 159 160 163 112 113 168 169 197 198 181 121 122 186 187 161 162 190 130 131 195 196 199 139 140 204 205 148 149 215 216 157 158 166 167 208 175 176 213 214 184 185 193 194 202 203 211 212:5 4 5 4 5 4 5 4 4 5 5 4 5 5 4 4 5 4 5 4 5 4 5 4,4 6 3 3 6 3 4 3 4 6 3 6 6 4 4 3 6 3 4 4 4 3 4 4 4 4> {(2, 63): 'tau3', (1, 125): 'tau2^-1*t3^-1*tau1', (0, 63): 't1^-1', (2, 186): 'tau2', (0, 81): 'tau3^-1*t1^-1', (2, 52): 't3', (2, 53): 't3', (0, 180): 't3^-1', (0, 171): 't2^-1', (1, 107): 't2', (1, 98): 't1', (2, 160): 'tau3*t1', (2, 161): 'tau3*t1', (2, 34): 't1^-1', (2, 35): 't1^-1', (1, 89): 'tau3^-1*t1^-1', (0, 153): 't2', (2, 152): 'tau2*t3*tau1^-1', (1, 211): 'tau1', (2, 151): 'tau2*t3*tau1^-1', (2, 185): 'tau2', (1, 215): 't2^-1', (2, 140): 'tau1', (2, 141): 'tau1', (1, 213): 'tau1', (2, 135): 'tau1', (1, 188): 't3^-1', (2, 116): 't2', (2, 117): 'tau2^-1', (1, 51): 'tau2^-1', (2, 115): 't2', (2, 88): 't2^-1', (0, 117): 'tau2^-1*t3^-1*tau1', (1, 157): 'tau3', (2, 89): 't2^-1', (2, 87): 'tau3^-1', (1, 148): 'tau2', (2, 68): 'tau3', (1, 132): 'tau3^-1'}