U-tiling: UQC4430
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1438 |
*22222 |
(4,6,2) |
{4,4,4,4} |
{4.4.4.4}{4.6.6.4}{6.6.6.6}{6.6.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc9868
|
|
P4/mmm |
123 |
tetragonal |
{4,4,4,4} |
20 |
(4,6) |
G
|
False
|
|
sqc9870
|
|
I4122 |
98 |
tetragonal |
{4,4,4,4} |
20 |
(4,6) |
D
|
False
|
|
sqc3425
|
|
P4222 |
93 |
tetragonal |
{4,4,4,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {4.4.4.4}{4.6.6.4}{6.6.6.6}{6.6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<49.5:160:11 3 14 15 7 9 20 13 17 19 31 23 34 35 27 29 40 33 37 39 71 43 74 75 47 49 80 91 53 94 95 57 59 100 101 63 104 105 67 69 110 73 77 79 111 83 114 115 87 89 120 93 97 99 103 107 109 113 117 119 131 123 134 135 127 129 140 133 137 139 151 143 154 155 147 149 160 153 157 159,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160,21 42 43 5 46 47 98 99 30 31 52 53 15 56 57 78 79 40 62 63 25 66 67 118 119 82 83 35 86 87 108 109 61 45 138 139 70 81 55 128 129 90 65 158 159 101 122 123 75 126 127 110 85 148 149 111 132 133 95 136 137 120 142 143 105 146 147 152 153 115 156 157 141 125 150 151 135 160 145 155:4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(0, 59): 't2', (0, 63): 'tau2^-1', (0, 60): 'tau2^-1', (2, 59): 't2*tau3^-1', (0, 50): 't2', (0, 49): 't3', (0, 54): 't2', (2, 49): 't3*tau2', (0, 53): 't2', (0, 43): 't3', (0, 40): 't3', (0, 44): 't3', (0, 34): 't1', (0, 33): 't1', (2, 32): 't1', (0, 39): 't1', (2, 35): 't1', (2, 156): 't1^-1', (2, 29): 't1^-1', (2, 30): 't1', (2, 159): 'tau2^-1*t3^-1', (0, 30): 't1', (0, 159): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 155): 't1^-1', (2, 148): 't1', (2, 149): 't1*tau3*t2^-1', (2, 150): 't1^-1*tau3^-1*t2', (2, 151): 't1^-1', (2, 147): 't1', (2, 140): 'tau2*t3', (0, 139): 'tau1', (0, 143): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (0, 140): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (0, 123): 'tau1^-1', (0, 120): 'tau1^-1', (0, 124): 'tau1^-1', (0, 114): 'tau3^-1', (0, 113): 'tau3^-1', (2, 112): 't1', (0, 119): 'tau3^-1', (0, 104): 'tau2', (0, 110): 'tau3^-1', (0, 109): 'tau2', (2, 100): 'tau2*t3', (2, 28): 't1^-1', (2, 81): 't1^-1', (2, 36): 't1', (2, 27): 't1^-1', (2, 110): 'tau3^-1*t2', (0, 144): 'tau2*t3*tau1^-1*t2^-1*tau3*t1'}