U-tiling: UQC4431
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1438 |
*22222 |
(4,6,2) |
{4,4,4,4} |
{4.4.4.4}{4.6.6.4}{6.6.6.6}{6.6.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9297
|
|
P4/mmm |
123 |
tetragonal |
{4,4,4,3} |
20 |
(4,6) |
G
|
False
|
|
sqc9616
|
|
I4122 |
98 |
tetragonal |
{4,4,4,4} |
20 |
(4,6) |
D
|
False
|
|
sqc3268
|
|
P4222 |
93 |
tetragonal |
{4,4,4,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {4.4.4.4}{4.6.6.4}{6.6.6.6}{6.6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<49.3:160:91 3 94 95 7 9 100 71 13 74 75 17 19 80 111 23 114 115 27 29 120 101 33 104 105 37 39 110 131 43 134 135 47 49 140 121 53 124 125 57 59 130 151 63 154 155 67 69 160 73 77 79 141 83 144 145 87 89 150 93 97 99 103 107 109 113 117 119 123 127 129 133 137 139 143 147 149 153 157 159,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160,21 12 13 5 16 17 28 29 50 31 15 38 39 60 32 33 25 36 37 70 35 90 61 72 73 45 76 77 68 69 81 92 93 55 96 97 88 89 102 103 65 106 107 101 75 108 109 130 112 113 85 116 117 111 95 118 119 140 105 150 115 160 141 132 133 125 136 137 148 149 151 135 158 159 152 153 145 156 157 155:4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 60): 'tau2^-1*t3^-1', (2, 61): 'tau2^-1', (2, 62): 'tau2^-1', (2, 56): 't2', (2, 52): 't2', (2, 55): 't2', (2, 50): 't2*tau3^-1', (2, 51): 't2', (2, 45): 't3', (2, 46): 't3', (2, 41): 't3', (2, 42): 't3', (2, 36): 't1', (2, 37): 't1', (2, 38): 't1', (2, 39): 't1', (2, 32): 't1', (2, 35): 't1', (2, 156): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 157): 't1^-1*tau3^-1*t2', (2, 158): 't1^-1*tau3^-1*t2', (2, 159): 't1^-1', (2, 152): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 29): 't1^-1', (2, 148): 'tau2*t3', (2, 150): 'tau2^-1*t3^-1', (2, 151): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 23): 't1^-1', (0, 20): 't1^-1', (2, 147): 'tau2*t3', (2, 140): 't1*tau3*t2^-1', (2, 116): 'tau3^-1', (2, 136): 'tau1', (2, 132): 'tau1', (2, 135): 'tau1', (2, 131): 'tau1', (0, 114): 't1', (2, 117): 'tau3^-1*t2', (2, 118): 'tau3^-1*t2', (2, 112): 'tau3^-1', (2, 115): 'tau3^-1', (2, 108): 'tau2*t3', (2, 31): 't1', (2, 105): 'tau2', (2, 106): 'tau2', (2, 107): 'tau2*t3', (0, 89): 't1^-1', (0, 83): 't1^-1', (0, 80): 't1^-1', (2, 155): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 84): 't1^-1', (2, 20): 't1^-1', (2, 111): 'tau3^-1'}