U-tiling: UQC4436
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1440 |
*222222 |
(4,6,2) |
{4,4,4,4} |
{4.4.4.4}{4.12.12.4}{12.12.12.12... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc441
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4,4} |
5 |
(4,6) |
G
|
False
|
|
sqc3809
|
|
C2/c |
15 |
monoclinic |
{4,4,4,4} |
10 |
(4,6) |
D
|
False
|
|
sqc3801
|
|
Imma |
74 |
orthorhombic |
{4,4,4,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {4.4.4.4}{4.12.12.4}{12.12.12.12}{12.12.12.12} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<49.3:80:41 3 44 45 7 9 30 61 13 64 65 17 19 40 71 23 74 75 27 29 51 33 54 55 37 39 43 47 49 80 53 57 59 70 63 67 69 73 77 79,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80,51 42 43 5 46 47 28 29 20 71 62 63 15 66 67 38 39 61 72 73 25 76 77 40 41 52 53 35 56 57 45 78 79 70 55 68 69 80 65 75:4 12 4 12 4 4,4 4 4 4 4 4 4 4 4 4> {(2, 60): 't2', (0, 59): 't3^-1*tau2^-1*t1*tau3*t2^-1', (0, 63): 't2*tau3^-1', (0, 60): 't2*tau3^-1', (2, 59): 'tau1^-1', (0, 50): 't3^-1*tau2^-1', (0, 49): 't3*tau2*t1^-1*tau3^-1*t2', (0, 54): 't3^-1*tau2^-1', (2, 49): 'tau1', (2, 50): 't3^-1', (0, 53): 't3^-1*tau2^-1', (0, 43): 't3*tau2', (0, 40): 't3*tau2', (2, 40): 't3', (0, 44): 't3*tau2', (0, 39): 't1', (0, 24): 'tau3^-1*t2', (0, 29): 't1', (0, 23): 'tau3^-1*t2', (0, 20): 'tau3^-1*t2', (0, 14): 'tau3*t2^-1', (2, 10): 't2'}