U-tiling: UQC4438
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1440 |
*222222 |
(4,6,2) |
{4,4,4,4} |
{4.4.4.4}{4.12.12.4}{12.12.12.12... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc442
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4,4} |
5 |
(4,6) |
G
|
False
|
|
sqc3674
|
|
C2/c |
15 |
monoclinic |
{4,4,4,4} |
10 |
(4,6) |
D
|
False
|
|
sqc3675
|
|
Imma |
74 |
orthorhombic |
{4,4,4,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {4.4.4.4}{4.12.12.4}{12.12.12.12}{12.12.12.12} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<49.1:80:11 3 14 15 7 9 30 13 17 19 40 31 23 34 35 27 29 33 37 39 61 43 64 65 47 49 80 71 53 74 75 57 59 70 63 67 69 73 77 79,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80,21 42 43 5 46 47 58 59 50 31 62 63 15 66 67 78 79 70 72 73 25 76 77 68 69 80 52 53 35 56 57 48 49 60 71 45 61 55 65 75:4 12 4 4 12 4,4 4 4 4 4 4 4 4 4 4> {(2, 60): 't2*tau3^-1*t1^-1*tau2*t3', (2, 61): 't2*tau3^-1', (2, 62): 't2*tau3^-1', (2, 56): 't3^-1*tau2^-1', (0, 63): 'tau1^-1', (0, 60): 'tau1^-1', (0, 50): 'tau1^-1', (2, 55): 't3^-1*tau2^-1', (2, 48): 't3', (0, 53): 'tau1^-1', (2, 47): 't3', (2, 40): 't3*tau2*t1^-1*tau3^-1*t2', (2, 41): 't3*tau2', (0, 44): 'tau1', (2, 32): 'tau2*t3', (2, 57): 't3^-1', (2, 28): 't2^-1', (2, 30): 't1', (2, 31): 'tau2*t3', (2, 25): 'tau3^-1*t2', (2, 27): 't2^-1', (2, 20): 't1', (2, 21): 'tau3^-1*t2', (2, 22): 'tau3^-1*t2', (2, 16): 'tau3*t2^-1', (2, 17): 't2', (2, 18): 't2', (2, 15): 'tau3*t2^-1', (2, 8): 't3', (2, 5): 'tau2^-1*t3^-1', (2, 6): 'tau2^-1*t3^-1', (2, 2): 'tau2^-1*t3^-1', (0, 54): 'tau1^-1', (2, 76): 't2^-1*tau3'}