U-tiling: UQC4439
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1440 |
*222222 |
(4,6,2) |
{4,4,4,4} |
{4.4.4.4}{4.12.12.4}{12.12.12.12... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc2194
|
|
Pmmm |
47 |
orthorhombic |
{3,3,4,3} |
10 |
(4,6) |
G
|
False
|
|
sqc3632
|
|
I212121 |
24 |
orthorhombic |
{4,4,4,4} |
10 |
(4,6) |
D
|
False
|
|
sqc443
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4,4} |
5 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {4.4.4.4}{4.12.12.4}{12.12.12.12}{12.12.12.12} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<49.1:80:11 3 14 15 7 9 50 13 17 19 60 31 23 34 35 27 29 70 33 37 39 80 51 43 54 55 47 49 53 57 59 71 63 74 75 67 69 73 77 79,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80,21 42 43 5 46 47 18 19 30 31 52 53 15 56 57 40 62 63 25 66 67 38 39 72 73 35 76 77 61 45 58 59 70 71 55 80 65 78 79 75:4 12 4 12 4 4,4 4 4 4 4 4 4 4 4 4> {(0, 59): 'tau3^-1', (2, 56): 't1', (0, 63): 't2^-1*tau3*t1', (0, 60): 't2^-1*tau3*t1', (2, 59): 't2^-1*tau1^-1*t3*tau2', (0, 50): 'tau3^-1*t2', (0, 49): 't2^-1', (0, 54): 'tau3^-1*t2', (2, 49): 't2^-1*tau1^-1', (2, 50): 't1', (0, 53): 'tau3^-1*t2', (2, 37): 'tau2^-1*t3^-1', (2, 38): 'tau2^-1*t3^-1', (2, 39): 'tau2^-1*t1', (0, 39): 't3*tau1^-1*t2^-1*tau3*t1', (2, 29): 't3', (0, 29): 't3*tau1^-1', (2, 17): 't1^-1', (2, 18): 't1^-1', (2, 12): 't1^-1', (2, 11): 't1^-1', (2, 55): 't1', (2, 77): 'tau2^-1*t3^-1', (2, 78): 'tau2^-1*t3^-1', (0, 64): 't2^-1*tau3*t1'}