U-tiling: UQC4463
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1459 |
*2323 |
(4,5,2) |
{6,4,3,3} |
{5.5.5.5.5.5}{5.5.5.5}{5.5.5}{5.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12202
|
|
P4232 |
208 |
cubic |
{6,4,3,3} |
32 |
(4,5) |
G
|
False
|
|
sqc12191
|
|
I213 |
199 |
cubic |
{6,4,3,3} |
32 |
(4,6) |
D
|
False
|
|
sqc12161
|
|
F-43m |
216 |
cubic |
{6,4,3,3} |
32 |
(4,5) |
Topological data
Vertex degrees | {6,4,3,3} |
2D vertex symbol | {5.5.5.5.5.5}{5.5.5.5}{5.5.5}{5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<55.1:240:31 3 5 7 78 10 51 13 15 17 158 20 121 23 25 27 118 30 33 35 37 148 40 181 43 45 47 208 50 53 55 57 188 60 211 63 65 67 198 70 101 73 75 77 80 141 83 85 87 108 90 161 93 95 97 228 100 103 105 107 110 191 113 115 117 120 123 125 127 218 130 221 133 135 137 178 140 143 145 147 150 201 153 155 157 160 163 165 167 238 170 231 173 175 177 180 183 185 187 190 193 195 197 200 203 205 207 210 213 215 217 220 223 225 227 230 233 235 237 240,2 4 35 8 9 80 12 14 55 18 19 160 22 24 125 28 29 120 32 34 38 39 150 42 44 185 48 49 210 52 54 58 59 190 62 64 215 68 69 200 72 74 105 78 79 82 84 145 88 89 110 92 94 165 98 99 230 102 104 108 109 112 114 195 118 119 122 124 128 129 220 132 134 225 138 139 180 142 144 148 149 152 154 205 158 159 162 164 168 169 240 172 174 235 178 179 182 184 188 189 192 194 198 199 202 204 208 209 212 214 218 219 222 224 228 229 232 234 238 239,11 22 23 6 7 28 39 40 62 63 16 17 68 59 60 41 26 27 129 130 51 132 133 36 37 138 82 83 46 47 88 189 190 162 163 56 57 168 81 66 67 219 220 91 112 113 76 77 118 109 110 86 87 149 150 212 213 96 97 218 169 170 161 202 203 106 107 208 171 116 117 199 200 181 222 223 126 127 228 201 136 137 229 230 211 172 173 146 147 178 221 192 193 156 157 198 209 210 166 167 176 177 239 240 232 233 186 187 238 231 196 197 206 207 216 217 226 227 236 237:5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5,6 4 3 3 4 3 3 3 3 6 4 4 3 4 3 6 4 3 3 4 3 3 4 3 6 4 3 4 4 3 3 4> {(0, 57): 't3', (0, 190): 't2^-1', (2, 187): 'tau1^-1', (2, 181): 'tau1^-1', (2, 182): 'tau1^-1', (1, 114): 't2', (2, 177): 'tau3', (2, 178): 't2', (2, 179): 't2', (2, 172): 'tau3', (1, 104): 't1', (1, 234): 't2^-1', (2, 168): 't1*tau3', (2, 169): 't1*tau3', (1, 239): 'tau1*t3^-1*tau2^-1', (2, 171): 'tau3', (1, 224): 'tau1^-1*t3*tau2', (1, 99): 't2^-1', (2, 167): 'tau2', (2, 161): 'tau2', (2, 162): 'tau2', (0, 37): 't1^-1', (2, 158): 't3', (2, 159): 't3', (1, 94): 'tau3^-1*t1^-1', (2, 150): 'tau1', (0, 150): 't3', (0, 167): 'tau2*t3*tau1^-1', (1, 39): 't1^-1', (2, 138): 'tau2^-1*t3^-1*tau1', (2, 139): 'tau2^-1*t3^-1*tau1', (0, 130): 'tau2^-1*t3^-1*tau1', (2, 130): 'tau2^-1', (1, 204): 't3^-1', (1, 59): 't3', (0, 177): 'tau3*t1', (0, 127): 't2', (1, 179): 'tau3*t1', (1, 219): 't2^-1', (2, 108): 't1', (2, 109): 't1', (0, 97): 't2^-1', (2, 70): 'tau3', (0, 100): 't1', (0, 90): 'tau3^-1*t1^-1', (0, 170): 't2', (2, 198): 't2^-1', (2, 199): 't2^-1'}