U-tiling: UQC4681
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1525 |
*2323 |
(4,4,2) |
{3,9,6,4} |
{4.4.4}{4.4.4.4.4.4.4.4.4}{4.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12127
|
|
P4232 |
208 |
cubic |
{3,9,6,4} |
26 |
(4,4) |
G
|
False
|
|
sqc12126
|
|
I213 |
199 |
cubic |
{3,9,6,4} |
26 |
(4,5) |
D
|
False
|
|
sqc12125
|
|
F-43m |
216 |
cubic |
{3,9,6,4} |
26 |
(4,4) |
Topological data
Vertex degrees | {3,9,6,4} |
2D vertex symbol | {4.4.4}{4.4.4.4.4.4.4.4.4}{4.4.4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<7.1:240:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240,31 12 5 10 7 9 51 15 20 17 19 121 42 25 30 27 29 52 35 40 37 39 181 45 50 47 49 55 60 57 59 211 82 65 70 67 69 101 92 75 80 77 79 141 85 90 87 89 161 95 100 97 99 162 105 110 107 109 191 172 115 120 117 119 182 125 130 127 129 221 202 135 140 137 139 212 145 150 147 149 201 222 155 160 157 159 165 170 167 169 231 175 180 177 179 185 190 187 189 232 195 200 197 199 205 210 207 209 215 220 217 219 225 230 227 229 235 240 237 239,3 4 35 36 77 78 29 30 13 14 55 56 157 158 69 70 23 24 125 126 117 118 33 34 147 148 139 140 43 44 185 186 207 208 89 90 53 54 187 188 169 170 63 64 215 216 197 198 73 74 105 106 119 120 83 84 145 146 107 108 93 94 165 166 227 228 219 220 103 104 209 210 113 114 195 196 123 124 217 218 229 230 133 134 225 226 177 178 143 144 179 180 153 154 205 206 199 200 163 164 237 238 173 174 235 236 183 184 239 240 193 194 203 204 213 214 223 224 233 234:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,3 9 6 4 3 6 4 3 6 9 4 3 4 4 3 3 9 3 3 6 4 3 9 3 3 3> {(2, 188): 'tau1^-1', (2, 189): 'tau1^-1', (2, 56): 't3', (2, 57): 't3', (2, 176): 'tau3*t1', (2, 177): 'tau3*t1', (2, 178): 'tau3', (2, 179): 'tau3', (2, 164): 't1*tau3', (2, 174): 't2', (2, 175): 't2', (2, 168): 'tau2', (2, 169): 'tau2', (1, 110): 't2', (2, 36): 't1^-1', (2, 37): 't1^-1', (2, 166): 'tau2*t3*tau1^-1', (2, 167): 'tau2*t3*tau1^-1', (1, 100): 't1', (1, 230): 't2^-1', (1, 91): 'tau3^-1', (1, 90): 'tau3^-1*t1^-1', (1, 221): 'tau1^-1', (1, 220): 'tau1^-1*t3*tau2', (2, 154): 't3', (2, 155): 't3', (2, 165): 't1*tau3', (1, 201): 'tau2', (1, 200): 't3^-1', (2, 134): 'tau2^-1*t3^-1*tau1', (2, 135): 'tau2^-1*t3^-1*tau1', (2, 126): 't2', (2, 127): 't2', (2, 114): 't2', (2, 115): 't2', (2, 104): 't1', (2, 105): 't1', (2, 96): 't2^-1', (2, 97): 't2^-1'}