U-tiling: UQC4691
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc136 |
*2224 |
(2,3,2) |
{6,4} |
{4.4.4.4.4.4}{4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc3416
|
|
Fmmm |
69 |
orthorhombic |
{4,6,6,4} |
8 |
(4,4) |
G
|
False
|
|
sqc9782
|
|
Fddd |
70 |
orthorhombic |
{6,6,4,4} |
16 |
(4,5) |
D
|
False
|
|
sqc3556
|
|
Cmma |
67 |
orthorhombic |
{6,6,4,4} |
8 |
(4,4) |
Topological data
Vertex degrees | {6,6,4,4} |
2D vertex symbol | {4.4.4.4.4.4}{4.4.4.4.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<4.1:160:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160,21 92 5 10 7 9 31 112 15 20 17 19 132 25 30 27 29 152 35 40 37 39 61 102 45 50 47 49 71 82 55 60 57 59 142 65 70 67 69 122 75 80 77 79 121 85 90 87 89 131 95 100 97 99 141 105 110 107 109 151 115 120 117 119 125 130 127 129 135 140 137 139 145 150 147 149 155 160 157 159,3 4 15 16 47 48 89 90 13 14 57 58 109 110 23 24 35 36 67 68 129 130 33 34 77 78 149 150 43 44 55 56 119 120 53 54 99 100 63 64 75 76 159 160 73 74 139 140 83 84 105 106 117 118 93 94 115 116 107 108 103 104 113 114 123 124 145 146 157 158 133 134 155 156 147 148 143 144 153 154:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,6 6 4 4 6 4 6 4 4 6 4 6 6 4 6 4> {(1, 120): 't3^-1', (1, 111): 't2^-1', (1, 110): 't2^-1', (2, 36): 't1^-1', (2, 37): 't1^-1', (2, 38): 'tau3', (2, 39): 'tau3', (1, 101): 't2', (1, 100): 't2', (2, 28): 'tau2^-1', (2, 29): 'tau2^-1', (1, 91): 't3^-1', (1, 90): 't3^-1', (2, 26): 't1^-1', (2, 27): 't1^-1', (1, 81): 't3', (2, 144): 't2^-1*tau1^-1*t3', (2, 145): 't2^-1*tau1^-1*t3', (2, 146): 'tau3^-1*t1^-1*tau2', (2, 147): 'tau3^-1*t1^-1*tau2', (2, 138): 'tau2^-1', (2, 139): 'tau2^-1', (2, 134): 't3*tau1^-1*t2^-1', (2, 135): 't3*tau1^-1*t2^-1', (2, 126): 'tau2*t1^-1*tau3^-1', (2, 127): 'tau2*t1^-1*tau3^-1', (2, 158): 'tau3', (2, 114): 'tau1', (2, 115): 'tau1', (2, 159): 'tau3', (2, 104): 'tau1^-1', (2, 105): 'tau1^-1'}