U-tiling: UQC4739
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1592 |
*2323 |
(4,4,2) |
{3,4,9,4} |
{8.8.8}{8.3.3.8}{8.3.3.8.3.3.8.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12121
|
|
P4232 |
208 |
cubic |
{3,4,9,4} |
26 |
(4,4) |
G
|
False
|
|
sqc12122
|
|
I213 |
199 |
cubic |
{3,4,9,4} |
26 |
(4,5) |
D
|
False
|
|
sqc12120
|
|
F-43m |
216 |
cubic |
{3,4,9,4} |
26 |
(4,4) |
Topological data
Vertex degrees | {3,4,9,4} |
2D vertex symbol | {8.8.8}{8.3.3.8}{8.3.3.8.3.3.8.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<10.1:240:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240,31 3 14 7 10 9 51 13 17 20 19 121 23 44 27 30 29 33 54 37 40 39 181 43 47 50 49 53 57 60 59 211 63 84 67 70 69 101 73 94 77 80 79 141 83 87 90 89 161 93 97 100 99 103 164 107 110 109 191 113 174 117 120 119 123 184 127 130 129 221 133 204 137 140 139 143 214 147 150 149 201 153 224 157 160 159 163 167 170 169 231 173 177 180 179 183 187 190 189 193 234 197 200 199 203 207 210 209 213 217 220 219 223 227 230 229 233 237 240 239,71 72 5 6 77 78 29 30 151 152 15 16 157 158 69 70 111 112 25 26 117 118 141 142 35 36 147 148 139 140 201 202 45 46 207 208 89 90 181 182 55 56 187 188 169 170 191 192 65 66 197 198 75 76 119 120 101 102 85 86 107 108 221 222 95 96 227 228 219 220 105 106 209 210 115 116 211 212 125 126 217 218 229 230 171 172 135 136 177 178 145 146 179 180 155 156 199 200 231 232 165 166 237 238 175 176 185 186 239 240 195 196 205 206 215 216 225 226 235 236:8 3 3 8 3 3 3 3 8 3 8 3 3 3 3 8 3 3 8 3 3 3 3 3 3 3 3 3 3 3,3 4 9 4 3 4 4 3 4 4 9 4 4 4 4 4 4 9 4 3 4 4 4 9 4 4> {(2, 188): 'tau1^-1', (2, 189): 'tau1^-1', (2, 56): 't3', (2, 57): 't3', (2, 180): 't3^-1', (2, 181): 't3^-1', (2, 171): 'tau3*t1', (2, 176): 'tau3*t1', (2, 177): 'tau3*t1', (2, 168): 'tau2', (2, 169): 'tau2', (2, 170): 'tau3*t1', (1, 110): 't2', (2, 36): 't1^-1', (2, 37): 't1^-1', (2, 166): 'tau2*t3*tau1^-1', (2, 167): 'tau2*t3*tau1^-1', (2, 160): 'tau2*t3*tau1^-1', (2, 161): 'tau2*t3*tau1^-1', (1, 230): 't2^-1', (2, 30): 't1^-1', (2, 31): 't1^-1', (1, 220): 'tau1^-1*t3*tau2', (1, 223): 'tau1^-1', (2, 148): 'tau3^-1', (2, 149): 'tau3^-1', (1, 73): 'tau3', (1, 200): 't3^-1', (1, 203): 'tau2', (1, 70): 't1^-1', (2, 126): 't2', (2, 127): 't2', (2, 120): 't2', (2, 121): 't2', (1, 90): 'tau3^-1*t1^-1', (2, 96): 't2^-1', (2, 97): 't2^-1', (2, 220): 't2', (2, 221): 't2'}