U-tiling: UQC4772
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1762 |
*22222 |
(4,6,2) |
{4,3,4,4} |
{3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc10082
|
|
P4/mmm |
123 |
tetragonal |
{4,3,4,3} |
24 |
(4,6) |
G
|
False
|
|
sqc10330
|
|
I4122 |
98 |
tetragonal |
{4,3,4,4} |
24 |
(4,7) |
D
|
False
|
|
sqc4095
|
|
P4222 |
93 |
tetragonal |
{4,3,4,4} |
12 |
(4,6) |
Topological data
Vertex degrees | {4,3,4,4} |
2D vertex symbol | {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<61.4:176:23 3 5 28 8 10 33 34 14 16 39 19 21 44 25 27 30 32 36 38 41 43 67 47 49 72 52 54 77 89 58 60 94 63 65 99 69 71 74 76 111 80 82 116 85 87 121 91 93 96 98 122 102 104 127 107 109 132 113 115 118 120 124 126 129 131 155 135 137 160 140 142 165 166 146 148 171 151 153 176 157 159 162 164 168 170 173 175,2 25 6 7 9 11 13 36 17 18 20 22 24 28 29 31 33 35 39 40 42 44 46 69 50 51 53 55 57 91 61 62 64 66 68 72 73 75 77 79 113 83 84 86 88 90 94 95 97 99 101 124 105 106 108 110 112 116 117 119 121 123 127 128 130 132 134 157 138 139 141 143 145 168 149 150 152 154 156 160 161 163 165 167 171 172 174 176,12 4 5 17 29 30 108 109 55 15 16 40 41 86 87 66 34 26 27 39 130 131 77 37 38 119 120 99 78 48 49 83 73 74 152 153 100 59 60 105 95 96 141 142 111 70 71 116 174 175 81 82 117 118 143 122 92 93 127 163 164 103 104 128 129 154 114 115 165 125 126 176 144 136 137 149 161 162 147 148 172 173 166 158 159 171 169 170:3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8,4 3 4 4 3 4 4 4 4 4 4 3 4 4 3 4 4 3 4 3 4 3 3 4> {(2, 60): 't2', (2, 61): 't2*tau3^-1', (2, 62): 't2*tau3^-1', (1, 46): 't3*tau2', (0, 55): 't2*tau3^-1', (2, 50): 't3*tau2', (2, 51): 't3*tau2', (2, 172): 'tau2^-1*t3^-1', (0, 43): 't1', (2, 175): 't1^-1', (0, 175): 't1^-1*tau3^-1*t2', (2, 170): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 171): 'tau2^-1*t3^-1', (2, 165): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 38): 't1', (2, 160): 't1*tau3*t2^-1', (2, 161): 't1*tau3*t2^-1', (2, 162): 't1', (2, 163): 't1', (0, 154): 't1*tau3*t2^-1', (2, 29): 't1^-1', (0, 159): 'tau2*t3', (2, 148): 'tau1', (0, 38): 't1', (0, 22): 't1^-1', (2, 33): 't1', (2, 143): 'tau1', (0, 164): 'tau2*t3', (2, 6): 't1', (0, 165): 'tau2^-1*t3^-1', (2, 129): 't1', (2, 130): 't1', (1, 57): 't2*tau3^-1', (0, 120): 'tau2*t3', (2, 55): 't2', (0, 126): 'tau3^-1*t2', (2, 121): 'tau3^-1', (0, 115): 'tau2*t3', (2, 43): 't1', (2, 49): 't3', (2, 110): 'tau2', (0, 109): 't2^-1*tau3', (2, 126): 'tau3^-1', (0, 170): 't1^-1*tau3^-1*t2', (2, 115): 'tau2', (1, 24): 't1^-1', (1, 156): 't1*tau3*t2^-1', (1, 145): 't3*tau2', (2, 77): 't3^-1', (0, 66): 'tau2^-1*t3^-1'}