h-net: hqc1762


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(4,6,2)
Vertex degrees{4,3,4,4}
2D vertex symbol {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8}
Delaney-Dress Symbol <1762.2:11:1 3 5 6 8 10 11,2 3 6 7 9 11,1 4 5 6 7 8 9 10 11:3 8,4 3 4 4>
Dual net hqc1625

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc4472 Fmmm 69 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4655 Fmmm 69 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc10594 P4/mmm 123 tetragonal {4,3,4,4} 24 (4,6)
Full image sqc10330 I4122 98 tetragonal {4,3,4,4} 24 (4,7)
Full image sqc10331 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10356 I4122 98 tetragonal {4,3,4,4} 24 (4,7)
Full image sqc10366 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10368 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10388 I4122 98 tetragonal {4,3,4,4} 24 (4,7)
Full image sqc10579 I4122 98 tetragonal {4,3,4,4} 24 (4,7)
Full image sqc10584 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10592 I4122 98 tetragonal {4,3,4,4} 24 (4,7)
Full image sqc10625 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc639 Pmmm 47 orthorhombic {4,3,4,4} 6 (4,6)
Full image sqc4009 P4222 93 tetragonal {4,4,4,3} 12 (4,6)
Full image sqc4095 P4222 93 tetragonal {4,3,4,4} 12 (4,6)
Full image sqc4186 P4222 93 tetragonal {4,3,4,4} 12 (4,6)
Full image sqc4295 P42/mmc 131 tetragonal {3,4,4,4} 12 (4,6)
Full image sqc4302 P4222 93 tetragonal {4,4,4,3} 12 (4,6)
Full image sqc4536 Cmma 67 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4642 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4656 Cmma 67 orthorhombic {4,4,3,4} 12 (4,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC4771 *22222a (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} No s‑net Snet sqc10579 Snet sqc4009
Tiling details UQC4772 *22222a (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc10082 Snet sqc10330 Snet sqc4095
Tiling details UQC4773 *22222b (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc4472 Snet sqc10368 Snet sqc639
Tiling details UQC4774 *22222a (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc10062 Snet sqc10388 Snet sqc4186
Tiling details UQC4775 *22222a (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc10594 Snet sqc10592 Snet sqc4295
Tiling details UQC4776 *22222b (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc3999 Snet sqc10366 Snet sqc4642
Tiling details UQC4777 *22222b (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc4655 Snet sqc10584 Snet sqc639
Tiling details UQC4778 *22222b (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} No s‑net Snet sqc10331 Snet sqc4536
Tiling details UQC4779 *22222a (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} No s‑net Snet sqc10356 Snet sqc4302
Tiling details UQC4780 *22222b (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc639 Snet sqc10625 Snet sqc4656

Symmetry-lowered hyperbolic tilings