U-tiling: UQC4806
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1767 |
*22222 |
(4,6,2) |
{3,4,4,4} |
{8.3.8}{8.8.3.3}{8.8.8.8}{8.8.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc10081
|
|
P4/mmm |
123 |
tetragonal |
{3,4,4,3} |
24 |
(4,6) |
G
|
False
|
|
sqc10328
|
|
I4122 |
98 |
tetragonal |
{3,4,4,4} |
24 |
(4,7) |
D
|
False
|
|
sqc4094
|
|
P4222 |
93 |
tetragonal |
{4,3,4,4} |
12 |
(4,6) |
Topological data
Vertex degrees | {3,4,4,4} |
2D vertex symbol | {8.3.8}{8.8.3.3}{8.8.8.8}{8.8.8.8} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<62.4:176:23 3 5 17 8 10 33 34 14 16 19 21 44 25 27 39 30 32 36 38 41 43 67 47 49 83 52 54 77 89 58 60 105 63 65 99 69 71 116 74 76 111 80 82 85 87 121 91 93 127 96 98 122 102 104 107 109 132 113 115 118 120 124 126 129 131 155 135 137 149 140 142 165 166 146 148 151 153 176 157 159 171 162 164 168 170 173 175,2 7 15 6 9 11 13 18 17 20 22 24 29 37 28 31 33 35 40 39 42 44 46 51 81 50 53 55 57 62 103 61 64 66 68 73 114 72 75 77 79 84 83 86 88 90 95 125 94 97 99 101 106 105 108 110 112 117 116 119 121 123 128 127 130 132 134 139 147 138 141 143 145 150 149 152 154 156 161 169 160 163 165 167 172 171 174 176,12 4 5 28 29 30 53 54 110 15 16 39 40 41 64 65 88 34 26 27 75 76 132 37 38 97 98 121 78 48 49 72 73 74 154 100 59 60 94 95 96 143 111 70 71 176 81 82 116 117 118 141 142 122 92 93 165 103 104 127 128 129 152 153 114 115 163 164 125 126 174 175 144 136 137 160 161 162 147 148 171 172 173 166 158 159 169 170:8 3 8 3 8 3 8 3 3 8 3 8 8 3 8 3,3 4 4 4 4 4 4 3 4 4 3 4 3 4 3 4 4 3 4 4 3 4 4 3> {(1, 124): 'tau3^-1', (0, 60): 't2', (1, 113): 'tau2', (0, 49): 't3', (0, 54): 't3*tau2', (0, 55): 't2*tau3^-1', (2, 172): 't1^-1*tau3^-1*t2', (2, 173): 't1^-1', (2, 174): 't1^-1', (2, 127): 'tau3^-1*t2', (2, 40): 't1', (2, 41): 't1', (0, 44): 't3*tau2', (2, 171): 't1^-1*tau3^-1*t2', (2, 164): 't1', (2, 165): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 32): 't1^-1', (2, 39): 't1', (0, 38): 't1', (2, 161): 'tau2*t3', (0, 164): 't1*tau3*t2^-1', (1, 102): 't2^-1', (0, 154): 't1*tau3*t2^-1', (2, 159): 'tau2*t3', (0, 159): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (2, 38): 't1', (2, 148): 't2^-1*tau3*t1', (1, 80): 't3^-1', (0, 22): 't1^-1', (0, 148): 'tau1', (2, 33): 't1', (2, 143): 'tau1', (2, 138): 't3^-1*tau2^-1', (2, 117): 'tau2*t3', (0, 165): 'tau2^-1*t3^-1', (2, 128): 'tau3^-1*t2', (2, 131): 't1', (2, 126): 'tau3^-1*t2', (2, 55): 't2', (0, 126): 'tau3^-1', (2, 121): 'tau3^-1', (2, 116): 'tau2*t3', (0, 115): 'tau2', (2, 115): 'tau2*t3', (1, 168): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 110): 'tau2', (0, 153): 't3*tau2', (0, 98): 'tau3*t2^-1', (1, 36): 't1', (2, 44): 't3', (1, 146): 'tau1', (2, 42): 't1'}