h-net: hqc1767


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(4,6,2)
Vertex degrees{3,4,4,4}
2D vertex symbol {8.3.8}{8.8.3.3}{8.8.8.8}{8.8.8.8}
Delaney-Dress Symbol <1767.2:11:1 3 5 6 8 10 11,2 7 4 6 9 11,1 4 5 6 7 8 9 10 11:8 3,3 4 4 4>
Dual net hqc1672

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc4471 Fmmm 69 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4654 Fmmm 69 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc10591 P4/mmm 123 tetragonal {3,4,4,4} 24 (4,6)
Full image sqc10328 I4122 98 tetragonal {3,4,4,4} 24 (4,7)
Full image sqc10329 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc10354 I4122 98 tetragonal {3,4,4,4} 24 (4,7)
Full image sqc10365 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc10369 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc10385 I4122 98 tetragonal {3,4,4,4} 24 (4,7)
Full image sqc10578 I4122 98 tetragonal {3,4,4,4} 24 (4,7)
Full image sqc10588 I4122 98 tetragonal {3,4,4,4} 24 (4,7)
Full image sqc10596 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc10622 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc632 Pmmm 47 orthorhombic {3,4,4,4} 6 (4,6)
Full image sqc4008 P4222 93 tetragonal {4,4,4,3} 12 (4,6)
Full image sqc4094 P4222 93 tetragonal {4,3,4,4} 12 (4,6)
Full image sqc4183 P4222 93 tetragonal {4,4,3,4} 12 (4,6)
Full image sqc4293 P42/mmc 131 tetragonal {3,4,4,4} 12 (4,6)
Full image sqc4304 P4222 93 tetragonal {4,4,4,3} 12 (4,6)
Full image sqc4541 Cmma 67 orthorhombic {4,4,4,3} 12 (4,6)
Full image sqc4645 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4653 Cmma 67 orthorhombic {4,4,4,3} 12 (4,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC4797 *22222a (4,6,2) {3,4,4,4} {8.3.8}{8.8.3.3}{8.8.8.8}{8.8.8.8} No s‑net Snet sqc10578 Snet sqc4008
Tiling details UQC4798 *22222a (4,6,2) {3,4,4,4} {8.3.8}{8.8.3.3}{8.8.8.8}{8.8.8.8} Snet sqc10072 Snet sqc10385 Snet sqc4183
Tiling details UQC4799 *22222a (4,6,2) {3,4,4,4} {8.3.8}{8.8.3.3}{8.8.8.8}{8.8.8.8} No s‑net Snet sqc10354 Snet sqc4304
Tiling details UQC4800 *22222b (4,6,2) {3,4,4,4} {8.3.8}{8.8.3.3}{8.8.8.8}{8.8.8.8} No s‑net Snet sqc10329 Snet sqc4541
Tiling details UQC4801 *22222b (4,6,2) {3,4,4,4} {8.3.8}{8.8.3.3}{8.8.8.8}{8.8.8.8} Snet sqc4654 Snet sqc10596 Snet sqc632
Tiling details UQC4802 *22222b (4,6,2) {3,4,4,4} {8.3.8}{8.8.3.3}{8.8.8.8}{8.8.8.8} Snet sqc3997 Snet sqc10365 Snet sqc4645
Tiling details UQC4803 *22222b (4,6,2) {3,4,4,4} {8.3.8}{8.8.3.3}{8.8.8.8}{8.8.8.8} Snet sqc632 Snet sqc10622 Snet sqc4653
Tiling details UQC4804 *22222b (4,6,2) {3,4,4,4} {8.3.8}{8.8.3.3}{8.8.8.8}{8.8.8.8} Snet sqc4471 Snet sqc10369 Snet sqc632
Tiling details UQC4805 *22222a (4,6,2) {3,4,4,4} {8.3.8}{8.8.3.3}{8.8.8.8}{8.8.8.8} Snet sqc10591 Snet sqc10588 Snet sqc4293
Tiling details UQC4806 *22222a (4,6,2) {3,4,4,4} {8.3.8}{8.8.3.3}{8.8.8.8}{8.8.8.8} Snet sqc10081 Snet sqc10328 Snet sqc4094

Symmetry-lowered hyperbolic tilings