U-tiling: UQC4824
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1772 |
*22222 |
(4,6,2) |
{4,3,4,4} |
{3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc10064
|
|
P4/mmm |
123 |
tetragonal |
{4,3,3,4} |
24 |
(4,6) |
G
|
False
|
|
sqc10350
|
|
I4122 |
98 |
tetragonal |
{4,3,4,4} |
24 |
(4,7) |
D
|
False
|
|
sqc4171
|
|
P4222 |
93 |
tetragonal |
{4,3,4,4} |
12 |
(4,6) |
Topological data
Vertex degrees | {4,3,4,4} |
2D vertex symbol | {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<63.1:176:23 3 5 7 30 10 33 34 14 16 18 41 21 44 25 27 29 32 36 38 40 43 67 47 49 51 74 54 77 89 58 60 62 96 65 99 69 71 73 76 111 80 82 84 118 87 121 91 93 95 98 122 102 104 106 129 109 132 113 115 117 120 124 126 128 131 155 135 137 139 162 142 165 166 146 148 150 173 153 176 157 159 161 164 168 170 172 175,2 25 6 9 8 11 13 36 17 20 19 22 24 28 31 30 33 35 39 42 41 44 46 69 50 53 52 55 57 91 61 64 63 66 68 72 75 74 77 79 113 83 86 85 88 90 94 97 96 99 101 124 105 108 107 110 112 116 119 118 121 123 127 130 129 132 134 157 138 141 140 143 145 168 149 152 151 154 156 160 163 162 165 167 171 174 173 176,45 4 5 50 51 107 31 32 22 56 15 16 61 62 85 42 43 67 26 27 72 73 129 44 89 37 38 94 95 118 48 49 151 75 76 88 59 60 140 97 98 110 70 71 173 121 133 81 82 138 139 119 120 92 93 162 132 144 103 104 149 150 130 131 155 114 115 160 161 166 125 126 171 172 136 137 163 164 154 147 148 174 175 158 159 176 169 170:3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8,4 3 4 4 4 3 4 4 4 4 4 3 4 3 4 4 3 4 3 4 4 3 4 3> {(1, 123): 'tau3^-1*t2', (0, 62): 't2*tau3^-1', (0, 172): 'tau2^-1*t3^-1', (0, 51): 't3*tau2', (2, 54): 't3', (2, 43): 't1', (0, 54): 't3*tau2', (2, 173): 't1^-1*tau3^-1*t2', (2, 174): 't1^-1*tau3^-1*t2', (2, 175): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 175): 'tau2^-1*t3^-1', (2, 170): 't1^-1', (2, 171): 't1^-1', (2, 165): 't1^-1', (0, 32): 't1^-1', (0, 33): 't1', (2, 161): 't1', (2, 162): 'tau2*t3', (2, 163): 'tau2*t3', (0, 154): 'tau2*t3', (2, 39): 't1', (2, 153): 'tau1', (2, 38): 't1', (0, 29): 't1^-1', (2, 20): 't1^-1', (2, 19): 't1^-1', (2, 33): 't1', (0, 139): 't2*tau3^-1*t1^-1', (0, 164): 't1*tau3*t2^-1', (1, 79): 't3^-1*tau2^-1', (0, 165): 't1^-1*tau3^-1*t2', (2, 128): 't1', (2, 130): 'tau3^-1*t2', (2, 131): 'tau3^-1', (0, 121): 'tau3^-1*t2', (2, 120): 'tau2', (2, 118): 'tau2*t3', (2, 119): 'tau2*t3', (2, 109): 't2^-1', (0, 110): 'tau2*t3', (2, 107): 't2^-1*tau3', (0, 98): 'tau3*t2^-1', (1, 35): 't1', (1, 167): 't1^-1*tau3^-1*t2', (1, 156): 'tau2*t3'}