h-net: hqc1772


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(4,6,2)
Vertex degrees{4,3,4,4}
2D vertex symbol {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8}
Delaney-Dress Symbol <1772.2:11:1 3 5 7 8 10 11,2 3 6 9 8 11,1 4 5 6 7 8 9 10 11:3 8,4 3 4 4>
Dual net hqc1733

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc4485 Fmmm 69 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4526 Fmmm 69 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc10589 P4/mmm 123 tetragonal {4,3,4,4} 24 (4,6)
Full image sqc10350 I4122 98 tetragonal {4,3,4,4} 24 (4,7)
Full image sqc10351 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10391 I4122 98 tetragonal {4,3,4,4} 24 (4,7)
Full image sqc10392 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10393 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10395 I4122 98 tetragonal {4,3,4,4} 24 (4,7)
Full image sqc10396 I4122 98 tetragonal {4,3,4,4} 24 (4,7)
Full image sqc10397 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10585 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10586 I4122 98 tetragonal {4,3,4,4} 24 (4,7)
Full image sqc658 Pmmm 47 orthorhombic {4,3,4,4} 6 (4,6)
Full image sqc4171 P4222 93 tetragonal {4,3,4,4} 12 (4,6)
Full image sqc4188 P4222 93 tetragonal {4,3,4,4} 12 (4,6)
Full image sqc4189 P4222 93 tetragonal {4,4,3,4} 12 (4,6)
Full image sqc4195 P4222 93 tetragonal {3,4,4,4} 12 (4,6)
Full image sqc4481 P42/mmc 131 tetragonal {4,4,3,4} 12 (4,6)
Full image sqc4538 Cmma 67 orthorhombic {4,4,4,3} 12 (4,6)
Full image sqc4539 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4639 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC4823 *22222a (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc10060 Snet sqc10395 Snet sqc4189
Tiling details UQC4824 *22222a (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc10064 Snet sqc10350 Snet sqc4171
Tiling details UQC4825 *22222a (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc10063 Snet sqc10391 Snet sqc4188
Tiling details UQC4826 *22222b (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc3953 Snet sqc10393 Snet sqc4539
Tiling details UQC4827 *22222b (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc4485 Snet sqc10392 Snet sqc658
Tiling details UQC4828 *22222b (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc658 Snet sqc10585 Snet sqc4639
Tiling details UQC4829 *22222b (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc4526 Snet sqc10397 Snet sqc658
Tiling details UQC4830 *22222a (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc10589 Snet sqc10586 Snet sqc4481
Tiling details UQC4831 *22222a (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc10071 Snet sqc10396 Snet sqc4195
Tiling details UQC4832 *22222b (4,6,2) {4,3,4,4} {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} Snet sqc3952 Snet sqc10351 Snet sqc4538

Symmetry-lowered hyperbolic tilings