U-tiling: UQC4958
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1817 |
*22222 |
(4,5,2) |
{8,6,4,4} |
{3.4.4.3.3.4.4.3}{3.4.4.3.4.4}{4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc3941
|
|
Fmmm |
69 |
orthorhombic |
{7,4,4,6} |
8 |
(4,5) |
G
|
False
|
|
sqc10418
|
|
Fddd |
70 |
orthorhombic |
{8,6,4,4} |
16 |
(4,6) |
D
|
False
|
|
sqc4053
|
|
Cmma |
67 |
orthorhombic |
{8,4,4,6} |
8 |
(4,5) |
Topological data
Vertex degrees | {8,6,4,4} |
2D vertex symbol | {3.4.4.3.3.4.4.3}{3.4.4.3.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<5.5:176:12 3 5 7 9 11 14 16 18 20 22 34 25 27 29 31 33 36 38 40 42 44 56 47 49 51 53 55 58 60 62 64 66 78 69 71 73 75 77 80 82 84 86 88 111 91 93 95 97 99 122 102 104 106 108 110 113 115 117 119 121 124 126 128 130 132 155 135 137 139 141 143 166 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176,2 14 6 11 8 10 13 17 22 19 21 24 36 28 33 30 32 35 39 44 41 43 46 58 50 55 52 54 57 61 66 63 65 68 80 72 77 74 76 79 83 88 85 87 90 113 94 99 96 98 101 124 105 110 107 109 112 116 121 118 120 123 127 132 129 131 134 157 138 143 140 142 145 168 149 154 151 153 156 160 165 162 164 167 171 176 173 175,23 4 5 105 106 96 97 54 55 34 15 16 127 128 118 119 65 66 26 27 149 150 140 141 76 77 37 38 171 172 162 163 87 88 67 48 49 116 117 129 130 78 59 60 94 95 107 108 70 71 160 161 173 174 81 82 138 139 151 152 133 92 93 131 132 144 103 104 120 121 155 114 115 166 125 126 136 137 175 176 147 148 164 165 158 159 169 170:3 4 4 3 4 4 3 4 4 3 4 4 3 4 3 4 4 4 3 4 3 4 4 4,8 6 4 4 8 4 4 6 4 4 4 4 8 8 6 6> {(2, 60): 't3^-1', (2, 61): 't3^-1', (1, 123): 'tau1', (1, 112): 'tau1^-1', (2, 49): 't2^-1', (2, 50): 't2^-1', (2, 172): 'tau3', (2, 173): 'tau3', (2, 174): 'tau3*t1*tau2^-1', (2, 175): 'tau3*t1*tau2^-1', (2, 40): 'tau3', (2, 41): 'tau3', (2, 42): 't1^-1', (2, 43): 't1^-1', (2, 164): 'tau3^-1*t1^-1*tau2', (2, 165): 't2', (2, 32): 't1^-1', (2, 163): 'tau3^-1*t1^-1*tau2', (0, 154): 't2^-1*tau1^-1*t3', (2, 29): 'tau2^-1', (2, 30): 'tau2^-1', (2, 31): 't1^-1', (2, 154): 't2^-1', (2, 150): 'tau2^-1', (2, 151): 'tau2^-1', (2, 16): 't2', (2, 17): 't2', (2, 143): 't3', (0, 143): 't3*tau1^-1*t2^-1', (2, 132): 't3^-1', (2, 5): 't3', (2, 6): 't3', (0, 99): 'tau1^-1', (1, 167): 't2*tau1*t3^-1', (0, 88): 'tau1', (1, 156): 't2^-1*tau1^-1*t3'}