U-tiling: UQC5005
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1832 |
*2323 |
(4,5,2) |
{4,3,6,4} |
{9.4.4.9}{9.4.4}{4.4.4.4.4.4}{4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12534
|
|
P4232 |
208 |
cubic |
{4,3,6,4} |
34 |
(4,5) |
G
|
False
|
|
sqc12533
|
|
I213 |
199 |
cubic |
{4,3,6,4} |
34 |
(4,6) |
D
|
False
|
|
sqc12532
|
|
F-43m |
216 |
cubic |
{4,3,6,4} |
34 |
(4,5) |
Topological data
Vertex degrees | {4,3,6,4} |
2D vertex symbol | {9.4.4.9}{9.4.4}{4.4.4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<14.1:264:34 3 5 7 9 11 56 14 16 18 20 22 133 25 27 29 31 33 36 38 40 42 44 199 47 49 51 53 55 58 60 62 64 66 232 69 71 73 75 77 111 80 82 84 86 88 155 91 93 95 97 99 177 102 104 106 108 110 113 115 117 119 121 210 124 126 128 130 132 135 137 139 141 143 243 146 148 150 152 154 157 159 161 163 165 221 168 170 172 174 176 179 181 183 185 187 254 190 192 194 196 198 201 203 205 207 209 212 214 216 218 220 223 225 227 229 231 234 236 238 240 242 245 247 249 251 253 256 258 260 262 264,2 80 6 11 8 10 13 168 17 22 19 21 24 124 28 33 30 32 35 157 39 44 41 43 46 223 50 55 52 54 57 201 61 66 63 65 68 212 72 77 74 76 79 83 88 85 87 90 113 94 99 96 98 101 245 105 110 107 109 112 116 121 118 120 123 127 132 129 131 134 234 138 143 140 142 145 190 149 154 151 153 156 160 165 162 164 167 171 176 173 175 178 256 182 187 184 186 189 193 198 195 197 200 204 209 206 208 211 215 220 217 219 222 226 231 228 230 233 237 242 239 241 244 248 253 250 252 255 259 264 261 263,12 4 5 17 18 30 31 87 88 15 16 74 75 175 176 45 26 27 50 51 131 132 56 37 38 61 62 151 152 164 165 48 49 96 97 230 231 59 60 184 185 208 209 89 70 71 94 95 219 220 100 81 82 105 106 129 130 92 93 120 121 103 104 239 240 252 253 177 114 115 182 183 228 229 188 125 126 193 194 199 136 137 204 205 250 251 241 242 221 147 148 226 227 197 198 232 158 159 237 238 195 196 243 169 170 248 249 217 218 180 181 263 264 191 192 202 203 261 262 254 213 214 259 260 224 225 235 236 246 247 257 258:9 4 9 4 9 4 4 4 4 4 4 4 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,4 3 6 4 3 4 4 3 4 3 6 4 3 4 3 4 4 3 4 6 3 3 4 4 4 4 3 6 4 3 4 4 3 4> {(0, 187): 't2', (2, 62): 'tau2^-1', (2, 63): 'tau2^-1', (2, 170): 'tau1', (2, 186): 'tau2*t3*tau1^-1', (0, 176): 't1*tau3', (1, 244): 't2', (1, 233): 't2^-1', (2, 42): 't1^-1', (2, 43): 't1^-1', (2, 165): 'tau1', (2, 161): 'tau3^-1', (2, 162): 'tau3^-1', (0, 165): 't3', (2, 152): 't1^-1*tau3^-1', (2, 153): 't1^-1*tau3^-1', (2, 141): 't2', (2, 149): 'tau2^-1', (2, 185): 'tau2*t3*tau1^-1', (1, 200): 't3^-1', (2, 142): 't2', (2, 143): 'tau2^-1', (0, 143): 'tau2^-1*t3^-1*tau1', (2, 260): 'tau1', (2, 261): 'tau1', (1, 255): 'tau1*t3^-1*tau2^-1', (2, 252): 't2', (0, 121): 't2', (1, 189): 'tau3*t1', (2, 251): 't2', (0, 110): 't1', (2, 105): 'tau3^-1', (1, 35): 't1^-1', (2, 225): 'tau2', (2, 248): 'tau1^-1', (2, 208): 't3^-1', (2, 77): 'tau3', (2, 104): 'tau3^-1', (2, 64): 't3'}