U-tiling: UQC5029
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1848 |
*22222 |
(4,5,2) |
{4,8,6,4} |
{5.5.5.5}{5.3.3.5.5.3.3.5}{5.3.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
G
|
False
|
|
sqc10324
|
|
Fddd |
70 |
orthorhombic |
{4,8,6,4} |
16 |
(4,6) |
D
|
False
|
|
sqc4535
|
|
Cmma |
67 |
orthorhombic |
{8,6,4,4} |
8 |
(4,5) |
Topological data
Vertex degrees | {4,8,6,4} |
2D vertex symbol | {5.5.5.5}{5.3.3.5.5.3.3.5}{5.3.3.5.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<8.2:176:100 3 5 7 9 11 122 14 16 18 20 22 144 25 27 29 31 33 166 36 38 40 42 44 111 47 49 51 53 55 89 58 60 62 64 66 155 69 71 73 75 77 133 80 82 84 86 88 91 93 95 97 99 102 104 106 108 110 113 115 117 119 121 124 126 128 130 132 135 137 139 141 143 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176,2 4 104 8 11 10 13 15 126 19 22 21 24 26 148 30 33 32 35 37 170 41 44 43 46 48 115 52 55 54 57 59 93 63 66 65 68 70 159 74 77 76 79 81 137 85 88 87 90 92 96 99 98 101 103 107 110 109 112 114 118 121 120 123 125 129 132 131 134 136 140 143 142 145 147 151 154 153 156 158 162 165 164 167 169 173 176 175,89 46 47 6 7 19 20 32 33 111 57 58 17 18 43 44 133 68 69 28 29 41 42 155 79 80 39 40 122 50 51 63 64 76 77 100 61 62 87 88 166 72 73 85 86 144 83 84 123 124 94 95 118 119 142 143 112 113 105 106 129 130 153 154 116 117 164 165 127 128 175 176 167 168 138 139 162 163 156 157 149 150 173 174 160 161 171 172:5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 3 3 3 3 3 3 3 3,4 8 6 4 4 6 4 8 4 6 4 6 8 4 4 8> {(2, 23): 't1^-1', (1, 125): 't2^-1', (1, 114): 't2', (0, 55): 't3^-1', (2, 172): 't2*tau1*t3^-1', (2, 174): 't2', (2, 175): 't2', (0, 44): 't2^-1', (0, 99): 't3^-1', (2, 164): 't2^-1', (2, 165): 'tau3', (2, 166): 'tau3*t1*tau2^-1', (2, 167): 'tau3*t1*tau2^-1', (2, 33): 'tau3', (2, 34): 't1^-1', (2, 35): 't1^-1', (2, 156): 'tau3^-1*t1^-1*tau2', (2, 24): 't1^-1', (1, 92): 't3', (2, 155): 'tau3^-1*t1^-1*tau2', (2, 22): 'tau2^-1', (2, 151): 't3*tau1^-1*t2^-1', (2, 161): 't2^-1*tau1^-1*t3', (2, 140): 't3^-1*tau1*t2', (0, 11): 't2', (2, 142): 't3^-1', (2, 143): 'tau2^-1', (1, 103): 't3^-1', (2, 163): 't2^-1', (2, 128): 'tau1', (2, 129): 'tau1', (2, 118): 'tau1^-1', (2, 109): 't3^-1', (2, 152): 't3', (2, 97): 't3', (2, 95): 'tau1'}