U-tiling: UQC5136
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2036 |
*22222 |
(4,6,2) |
{4,4,8,4} |
{6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc10687
|
|
P4/mmm |
123 |
tetragonal |
{4,4,7,4} |
20 |
(4,6) |
G
|
False
|
|
sqc10791
|
|
I4122 |
98 |
tetragonal |
{4,4,8,4} |
20 |
(4,7) |
D
|
False
|
|
sqc4811
|
|
P4222 |
93 |
tetragonal |
{4,4,8,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,4,8,4} |
2D vertex symbol | {6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<11.4:192:25 3 5 7 9 11 36 37 15 17 19 21 23 48 27 29 31 33 35 39 41 43 45 47 73 51 53 55 57 59 84 97 63 65 67 69 71 108 75 77 79 81 83 121 87 89 91 93 95 132 99 101 103 105 107 133 111 113 115 117 119 144 123 125 127 129 131 135 137 139 141 143 169 147 149 151 153 155 180 181 159 161 163 165 167 192 171 173 175 177 179 183 185 187 189 191,2 4 12 8 11 10 14 16 24 20 23 22 26 28 36 32 35 34 38 40 48 44 47 46 50 52 60 56 59 58 62 64 72 68 71 70 74 76 84 80 83 82 86 88 96 92 95 94 98 100 108 104 107 106 110 112 120 116 119 118 122 124 132 128 131 130 134 136 144 140 143 142 146 148 156 152 155 154 158 160 168 164 167 166 170 172 180 176 179 178 182 184 192 188 191 190,13 26 27 6 7 32 33 58 59 120 38 39 18 19 44 45 70 71 96 37 30 31 82 83 144 42 43 106 107 132 85 74 75 54 55 80 81 168 109 98 99 66 67 104 105 156 121 78 79 192 122 123 90 91 128 129 154 155 133 102 103 180 134 135 114 115 140 141 166 167 126 127 178 179 138 139 190 191 157 170 171 150 151 176 177 182 183 162 163 188 189 181 174 175 186 187:6 3 6 3 3 3 6 3 6 3 3 6 3 3 6 3 3 3 6 3 6 3 3 3,4 4 8 4 4 8 4 8 8 4 4 4 4 4 4 4 4 4 4 4> {(2, 188): 't1^-1*tau3^-1*t2', (0, 59): 't3*tau2', (2, 190): 't1^-1', (0, 191): 'tau2^-1*t3^-1', (0, 60): 't2*tau3^-1', (2, 187): 't1^-1*tau3^-1*t2', (2, 180): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 181): 't1^-1*tau3^-1*t2', (0, 48): 't3*tau2', (2, 176): 'tau2*t3', (0, 180): 'tau2^-1*t3^-1', (2, 179): 't1', (2, 44): 't1', (2, 45): 't1', (2, 46): 't1', (2, 175): 'tau2*t3', (2, 169): 'tau2*t3', (2, 170): 'tau2*t3', (2, 43): 't1', (2, 36): 't1', (0, 35): 't1^-1', (2, 60): 't2', (2, 38): 't1', (2, 156): 'tau1', (2, 158): 't2^-1*tau3*t1', (0, 144): 't2*tau3^-1*t1^-1', (2, 140): 'tau3^-1*t2', (2, 141): 't1', (2, 143): 't1', (0, 179): 't1*tau3*t2^-1', (2, 139): 'tau3^-1*t2', (2, 132): 'tau3^-1', (2, 133): 'tau3^-1*t2', (0, 0): 't1', (2, 128): 'tau2*t3', (2, 37): 't1', (2, 127): 'tau2*t3', (2, 120): 'tau2', (2, 121): 'tau2*t3', (2, 122): 'tau2*t3', (2, 48): 't3', (0, 107): 'tau3*t2^-1', (2, 110): 't2^-1*tau3'}