h-net: hqc2036


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(4,6,2)
Vertex degrees{4,4,8,4}
2D vertex symbol {6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3.3}{3.3.3.3}
Delaney-Dress Symbol <2036.2:12:1 3 5 7 9 11 12,2 4 12 8 11 10,1 2 3 6 7 8 9 10 11 12:6 3,4 4 8 4>
Dual net hqc2000

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc5159 Fmmm 69 orthorhombic {4,4,8,4} 10 (4,6)
Full image sqc5296 Fmmm 69 orthorhombic {4,8,4,4} 10 (4,6)
Full image sqc10984 P4/mmm 123 tetragonal {4,4,8,4} 20 (4,6)
Full image sqc10772 I4122 98 tetragonal {4,4,8,4} 20 (4,7)
Full image sqc10791 I4122 98 tetragonal {4,4,8,4} 20 (4,7)
Full image sqc10792 Fddd 70 orthorhombic {4,4,8,4} 20 (4,7)
Full image sqc10795 I4122 98 tetragonal {4,4,8,4} 20 (4,7)
Full image sqc10796 Fddd 70 orthorhombic {4,4,8,4} 20 (4,7)
Full image sqc10797 Fddd 70 orthorhombic {4,4,8,4} 20 (4,7)
Full image sqc10858 Fddd 70 orthorhombic {4,4,8,4} 20 (4,7)
Full image sqc10859 I4122 98 tetragonal {4,4,8,4} 20 (4,7)
Full image sqc10918 Fddd 70 orthorhombic {4,4,8,4} 20 (4,7)
Full image sqc10972 I4122 98 tetragonal {4,4,8,4} 20 (4,7)
Full image sqc790 Pmmm 47 orthorhombic {4,4,4,8} 5 (4,6)
Full image sqc4811 P4222 93 tetragonal {4,4,8,4} 10 (4,6)
Full image sqc4855 P4222 93 tetragonal {4,4,8,4} 10 (4,6)
Full image sqc4856 P4222 93 tetragonal {4,4,8,4} 10 (4,6)
Full image sqc4891 P4222 93 tetragonal {4,4,8,4} 10 (4,6)
Full image sqc5122 P42/mmc 131 tetragonal {4,4,8,4} 10 (4,6)
Full image sqc5297 Cmma 67 orthorhombic {4,4,8,4} 10 (4,6)
Full image sqc5311 Cmma 67 orthorhombic {4,4,8,4} 10 (4,6)
Full image sqc5382 Cmma 67 orthorhombic {4,4,8,4} 10 (4,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC5136 *22222a (4,6,2) {4,4,8,4} {6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3... Snet sqc10687 Snet sqc10791 Snet sqc4811
Tiling details UQC5137 *22222a (4,6,2) {4,4,8,4} {6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3... Snet sqc10679 Snet sqc10859 Snet sqc4856
Tiling details UQC5138 *22222b (4,6,2) {4,4,8,4} {6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3... Snet sqc4728 Snet sqc10792 Snet sqc5311
Tiling details UQC5139 *22222a (4,6,2) {4,4,8,4} {6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3... Snet sqc10686 Snet sqc10795 Snet sqc4855
Tiling details UQC5140 *22222b (4,6,2) {4,4,8,4} {6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3... Snet sqc4730 Snet sqc10796 Snet sqc5297
Tiling details UQC5141 *22222b (4,6,2) {4,4,8,4} {6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3... Snet sqc5159 Snet sqc10797 Snet sqc790
Tiling details UQC5142 *22222b (4,6,2) {4,4,8,4} {6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3... Snet sqc5296 Snet sqc10858 Snet sqc790
Tiling details UQC5143 *22222b (4,6,2) {4,4,8,4} {6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3... Snet sqc790 Snet sqc10918 Snet sqc5382
Tiling details UQC5144 *22222a (4,6,2) {4,4,8,4} {6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3... Snet sqc10984 Snet sqc10972 Snet sqc5122
Tiling details UQC5145 *22222a (4,6,2) {4,4,8,4} {6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3... Snet sqc10681 Snet sqc10772 Snet sqc4891

Symmetry-lowered hyperbolic tilings