U-tiling: UQC5139
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2036 |
*22222 |
(4,6,2) |
{4,4,8,4} |
{6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc10686
|
|
P4/mmm |
123 |
tetragonal |
{4,4,7,4} |
20 |
(4,6) |
G
|
False
|
|
sqc10795
|
|
I4122 |
98 |
tetragonal |
{4,4,8,4} |
20 |
(4,7) |
D
|
False
|
|
sqc4855
|
|
P4222 |
93 |
tetragonal |
{4,4,8,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,4,8,4} |
2D vertex symbol | {6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<11.3:192:109 3 5 7 9 11 120 85 15 17 19 21 23 96 133 27 29 31 33 35 144 121 39 41 43 45 47 132 157 51 53 55 57 59 168 145 63 65 67 69 71 156 181 75 77 79 81 83 192 87 89 91 93 95 169 99 101 103 105 107 180 111 113 115 117 119 123 125 127 129 131 135 137 139 141 143 147 149 151 153 155 159 161 163 165 167 171 173 175 177 179 183 185 187 189 191,2 4 12 8 11 10 14 16 24 20 23 22 26 28 36 32 35 34 38 40 48 44 47 46 50 52 60 56 59 58 62 64 72 68 71 70 74 76 84 80 83 82 86 88 96 92 95 94 98 100 108 104 107 106 110 112 120 116 119 118 122 124 132 128 131 130 134 136 144 140 143 142 146 148 156 152 155 154 158 160 168 164 167 166 170 172 180 176 179 178 182 184 192 188 191 190,25 14 15 6 7 20 21 34 35 60 37 18 19 46 47 72 38 39 30 31 44 45 84 42 43 108 73 86 87 54 55 92 93 82 83 97 110 111 66 67 116 117 106 107 122 123 78 79 128 129 121 90 91 130 131 156 134 135 102 103 140 141 133 114 115 142 143 168 126 127 180 138 139 192 169 158 159 150 151 164 165 178 179 181 162 163 190 191 182 183 174 175 188 189 186 187:6 3 6 3 6 3 6 3 6 3 6 3 6 3 3 6 3 3 3 3 3 3 3 3,4 4 8 4 8 4 4 4 4 4 4 4 4 8 4 8 4 4 4 4> {(2, 188): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 189): 't1^-1*tau3^-1*t2', (2, 190): 't1^-1*tau3^-1*t2', (2, 191): 't1^-1', (2, 56): 't3', (2, 187): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 180): 'tau2^-1*t3^-1', (2, 181): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 182): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 55): 't3', (2, 48): 't3*tau2', (2, 177): 'tau2*t3', (2, 178): 'tau2*t3', (2, 44): 't1', (2, 45): 't1', (2, 46): 't1', (2, 47): 't1', (2, 168): 't1*tau3*t2^-1', (2, 37): 't1', (2, 164): 'tau1', (0, 35): 't1^-1', (2, 60): 't2*tau3^-1', (2, 38): 't1', (2, 163): 'tau1', (2, 157): 'tau1', (0, 24): 't1^-1', (2, 31): 't1^-1', (2, 24): 't1^-1', (2, 146): 'tau1^-1', (2, 140): 'tau3^-1', (2, 141): 'tau3^-1*t2', (2, 142): 'tau3^-1*t2', (2, 139): 'tau3^-1', (2, 61): 't2', (2, 133): 'tau3^-1', (2, 134): 'tau3^-1', (2, 128): 'tau2', (2, 129): 'tau2*t3', (2, 130): 'tau2*t3', (2, 127): 'tau2', (2, 121): 'tau2', (2, 122): 'tau2', (2, 116): 't2^-1', (2, 49): 't3', (0, 107): 't1^-1', (2, 50): 't3', (2, 62): 't2', (0, 96): 't1^-1', (2, 115): 't2^-1'}