U-tiling: UQC5147
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2037 |
*22222 |
(4,6,2) |
{4,8,4,4} |
{6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10974
|
|
P4/mmm |
123 |
tetragonal |
{4,8,4,4} |
20 |
(4,6) |
G
|
False
|
|
sqc10973
|
|
I4122 |
98 |
tetragonal |
{4,8,4,4} |
20 |
(4,7) |
D
|
False
|
|
sqc5125
|
|
P42/mmc |
131 |
tetragonal |
{4,4,8,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,8,4,4} |
2D vertex symbol | {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<12.5:192:13 3 5 7 9 11 24 15 17 19 21 23 37 27 29 31 33 35 48 39 41 43 45 47 85 51 53 55 57 59 96 109 63 65 67 69 71 120 121 75 77 79 81 83 132 87 89 91 93 95 133 99 101 103 105 107 144 111 113 115 117 119 123 125 127 129 131 135 137 139 141 143 157 147 149 151 153 155 168 159 161 163 165 167 181 171 173 175 177 179 192 183 185 187 189 191,2 4 12 8 11 10 14 16 24 20 23 22 26 28 36 32 35 34 38 40 48 44 47 46 50 52 60 56 59 58 62 64 72 68 71 70 74 76 84 80 83 82 86 88 96 92 95 94 98 100 108 104 107 106 110 112 120 116 119 118 122 124 132 128 131 130 134 136 144 140 143 142 146 148 156 152 155 154 158 160 168 164 167 166 170 172 180 176 179 178 182 184 192 188 191 190,25 50 51 6 7 116 117 34 35 36 37 62 63 18 19 92 93 46 47 48 74 75 30 31 140 141 98 99 42 43 128 129 73 54 55 164 165 82 83 84 97 66 67 152 153 106 107 108 78 79 188 189 121 146 147 90 91 130 131 132 102 103 176 177 133 158 159 114 115 142 143 144 170 171 126 127 182 183 138 139 169 150 151 178 179 180 181 162 163 190 191 192 174 175 186 187:6 3 3 6 3 3 6 3 6 3 6 3 3 6 3 3 3 3 6 3 3 6 3 3,4 8 4 4 4 8 4 4 8 8 4 4 4 4 4 4 4 4 4 4> {(0, 59): 't3', (2, 190): 'tau2^-1*t3^-1', (2, 191): 'tau2^-1*t3^-1', (2, 57): 't3*tau2', (2, 58): 't3*tau2', (2, 59): 't3*tau2', (2, 180): 't1^-1*tau3^-1*t2', (0, 179): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (0, 48): 't3', (2, 176): 't1', (2, 177): 't1*tau3*t2^-1', (0, 180): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 179): 't1*tau3*t2^-1', (2, 175): 't1', (2, 168): 'tau2*t3', (0, 47): 't1', (2, 165): 't3*tau2', (2, 36): 't1', (2, 37): 't1', (2, 38): 't1', (2, 32): 't1^-1', (2, 33): 't1^-1', (0, 36): 't1', (2, 35): 't1^-1', (0, 155): 'tau1^-1', (2, 31): 't1^-1', (0, 60): 't2', (2, 154): 't2*tau3^-1*t1^-1', (0, 144): 'tau1^-1', (0, 143): 'tau3^-1', (2, 10): 't1', (2, 181): 't1^-1', (2, 132): 'tau3^-1*t2', (0, 131): 'tau2', (2, 134): 't1', (0, 132): 'tau3^-1', (0, 120): 'tau2', (2, 120): 'tau2*t3', (0, 119): 't2^-1', (2, 107): 'tau3*t2^-1', (2, 69): 't2*tau3^-1', (2, 70): 't2*tau3^-1'}