h-net: hqc2037


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(4,6,2)
Vertex degrees{4,8,4,4}
2D vertex symbol {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3.3}{3.3.3.3}
Delaney-Dress Symbol <2037.2:12:1 3 5 7 9 11 12,2 4 12 8 11 10,1 2 3 6 7 8 9 10 11 12:6 3,4 8 4 4>
Dual net hqc2002

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc927 Pmmm 47 orthorhombic {4,4,8,4} 5 (4,6)
Full image sqc5252 Fmmm 69 orthorhombic {4,4,8,4} 10 (4,6)
Full image sqc5403 Fmmm 69 orthorhombic {4,8,4,4} 10 (4,6)
Full image sqc10974 P4/mmm 123 tetragonal {4,8,4,4} 20 (4,6)
Full image sqc10773 I4122 98 tetragonal {4,8,4,4} 20 (4,7)
Full image sqc10827 I4122 98 tetragonal {4,8,4,4} 20 (4,7)
Full image sqc10828 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc10841 I4122 98 tetragonal {4,8,4,4} 20 (4,7)
Full image sqc10850 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc10851 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc10968 I4122 98 tetragonal {4,8,4,4} 20 (4,7)
Full image sqc10971 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc10973 I4122 98 tetragonal {4,8,4,4} 20 (4,7)
Full image sqc10985 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc4890 P4222 93 tetragonal {4,8,4,4} 10 (4,6)
Full image sqc5125 P42/mmc 131 tetragonal {4,4,8,4} 10 (4,6)
Full image sqc5149 P4222 93 tetragonal {4,4,8,4} 10 (4,6)
Full image sqc5312 Cmma 67 orthorhombic {4,8,4,4} 10 (4,6)
Full image sqc5383 P4222 93 tetragonal {4,4,4,8} 10 (4,6)
Full image sqc5384 P4222 93 tetragonal {8,4,4,4} 10 (4,6)
Full image sqc5406 Cmma 67 orthorhombic {4,8,4,4} 10 (4,6)
Full image sqc5408 Cmma 67 orthorhombic {4,4,4,8} 10 (4,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC5146 *22222a (4,6,2) {4,8,4,4} {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3... No s‑net Snet sqc10968 Snet sqc5149
Tiling details UQC5147 *22222a (4,6,2) {4,8,4,4} {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3... Snet sqc10974 Snet sqc10973 Snet sqc5125
Tiling details UQC5148 *22222b (4,6,2) {4,8,4,4} {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3... Snet sqc4729 Snet sqc10850 Snet sqc5408
Tiling details UQC5149 *22222b (4,6,2) {4,8,4,4} {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3... No s‑net Snet sqc10828 Snet sqc5312
Tiling details UQC5150 *22222a (4,6,2) {4,8,4,4} {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3... No s‑net Snet sqc10841 Snet sqc5384
Tiling details UQC5151 *22222b (4,6,2) {4,8,4,4} {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3... Snet sqc927 Snet sqc10971 Snet sqc5406
Tiling details UQC5152 *22222b (4,6,2) {4,8,4,4} {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3... Snet sqc5252 Snet sqc10851 Snet sqc927
Tiling details UQC5153 *22222b (4,6,2) {4,8,4,4} {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3... Snet sqc5403 Snet sqc10985 Snet sqc927
Tiling details UQC5154 *22222a (4,6,2) {4,8,4,4} {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3... Snet sqc10682 Snet sqc10773 Snet sqc4890
Tiling details UQC5155 *22222a (4,6,2) {4,8,4,4} {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3... Snet sqc10685 Snet sqc10827 Snet sqc5383

Symmetry-lowered hyperbolic tilings