U-tiling: UQC5154
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2037 |
*22222 |
(4,6,2) |
{4,8,4,4} |
{6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc10682
|
|
P4/mmm |
123 |
tetragonal |
{3,8,4,4} |
20 |
(4,6) |
G
|
False
|
|
sqc10773
|
|
I4122 |
98 |
tetragonal |
{4,8,4,4} |
20 |
(4,7) |
D
|
False
|
|
sqc4890
|
|
P4222 |
93 |
tetragonal |
{4,8,4,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,8,4,4} |
2D vertex symbol | {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<12.2:192:49 3 5 7 9 11 60 61 15 17 19 21 23 72 73 27 29 31 33 35 84 97 39 41 43 45 47 108 51 53 55 57 59 63 65 67 69 71 75 77 79 81 83 145 87 89 91 93 95 156 99 101 103 105 107 157 111 113 115 117 119 168 169 123 125 127 129 131 180 181 135 137 139 141 143 192 147 149 151 153 155 159 161 163 165 167 171 173 175 177 179 183 185 187 189 191,2 4 12 8 11 10 14 16 24 20 23 22 26 28 36 32 35 34 38 40 48 44 47 46 50 52 60 56 59 58 62 64 72 68 71 70 74 76 84 80 83 82 86 88 96 92 95 94 98 100 108 104 107 106 110 112 120 116 119 118 122 124 132 128 131 130 134 136 144 140 143 142 146 148 156 152 155 154 158 160 168 164 167 166 170 172 180 176 179 178 182 184 192 188 191 190,109 26 27 6 7 20 21 34 35 36 85 38 39 18 19 46 47 48 133 30 31 44 45 121 42 43 157 74 75 54 55 92 93 82 83 84 145 98 99 66 67 116 117 106 107 108 181 78 79 128 129 122 123 90 91 130 131 132 169 102 103 140 141 134 135 114 115 142 143 144 126 127 138 139 170 171 150 151 164 165 178 179 180 182 183 162 163 190 191 192 174 175 188 189 186 187:6 3 6 3 6 3 6 3 3 3 3 6 3 3 6 3 6 3 6 3 3 3 3 3,4 8 4 4 4 4 4 8 4 4 4 8 4 4 4 4 8 4 4 4> {(2, 188): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 189): 't1^-1*tau3^-1*t2', (2, 190): 't1^-1*tau3^-1*t2', (2, 191): 't1^-1*tau3^-1*t2', (2, 56): 't3', (0, 191): 't1^-1', (2, 187): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 181): 'tau2^-1*t3^-1', (2, 182): 'tau2^-1*t3^-1', (2, 55): 't3', (2, 177): 'tau2*t3', (2, 178): 'tau2*t3', (2, 179): 'tau2*t3', (2, 44): 't1', (2, 45): 't1', (2, 46): 't1', (2, 47): 't1', (2, 168): 't1', (0, 47): 't1', (2, 170): 't1*tau3*t2^-1', (2, 43): 't1', (2, 164): 'tau1', (0, 36): 't1', (2, 163): 'tau1', (2, 25): 't1^-1', (2, 26): 't1^-1', (2, 145): 't2*tau3^-1*t1^-1', (2, 140): 'tau3^-1', (2, 141): 'tau3^-1*t2', (2, 142): 'tau3^-1*t2', (2, 143): 'tau3^-1*t2', (2, 139): 'tau3^-1', (2, 132): 't1', (2, 128): 'tau2', (2, 129): 'tau2*t3', (2, 130): 'tau2*t3', (2, 131): 'tau2*t3', (2, 127): 'tau2', (2, 61): 't2*tau3^-1', (2, 116): 't2^-1', (2, 49): 't3*tau2', (2, 50): 't3*tau2', (2, 62): 't2*tau3^-1', (2, 115): 't2^-1', (0, 132): 't1'}