U-tiling: UQC5171
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2042 |
*22222 |
(4,6,2) |
{4,4,4,4} |
{12.12.12.12}{12.3.3.12}{12.12.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc10690
|
|
P4/mmm |
123 |
tetragonal |
{3,4,4,4} |
24 |
(4,6) |
G
|
False
|
|
sqc10861
|
|
I4122 |
98 |
tetragonal |
{4,4,4,4} |
24 |
(4,7) |
D
|
False
|
|
sqc4892
|
|
P42/mmc |
131 |
tetragonal |
{4,4,4,4} |
12 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {12.12.12.12}{12.3.3.12}{12.12.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<13.1:192:25 3 5 7 9 11 24 37 15 17 19 21 23 27 29 31 33 35 48 39 41 43 45 47 73 51 53 55 57 59 96 97 63 65 67 69 71 120 75 77 79 81 83 132 121 87 89 91 93 95 99 101 103 105 107 144 133 111 113 115 117 119 123 125 127 129 131 135 137 139 141 143 169 147 149 151 153 155 168 181 159 161 163 165 167 171 173 175 177 179 192 183 185 187 189 191,2 4 12 8 11 10 14 16 24 20 23 22 26 28 36 32 35 34 38 40 48 44 47 46 50 52 60 56 59 58 62 64 72 68 71 70 74 76 84 80 83 82 86 88 96 92 95 94 98 100 108 104 107 106 110 112 120 116 119 118 122 124 132 128 131 130 134 136 144 140 143 142 146 148 156 152 155 154 158 160 168 164 167 166 170 172 180 176 179 178 182 184 192 188 191 190,49 110 111 6 7 116 117 34 35 36 61 86 87 18 19 92 93 46 47 48 73 134 135 30 31 140 141 97 122 123 42 43 128 129 158 159 54 55 164 165 82 83 84 146 147 66 67 152 153 106 107 108 182 183 78 79 188 189 145 90 91 130 131 132 170 171 102 103 176 177 157 114 115 142 143 144 169 126 127 181 138 139 150 151 178 179 180 162 163 190 191 192 174 175 186 187:12 3 3 3 3 12 3 12 3 3 3 3 3 3 3 12 3 3 3 3,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(0, 59): 't3', (2, 190): 'tau2^-1*t3^-1', (2, 191): 'tau2^-1*t3^-1', (0, 191): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 58): 't3*tau2', (2, 59): 't3*tau2', (2, 180): 't1^-1', (2, 176): 't1', (2, 177): 't1*tau3*t2^-1', (2, 179): 't1*tau3*t2^-1', (0, 168): 'tau2*t3', (2, 175): 't1', (0, 47): 't1', (2, 170): 't1', (2, 36): 't1', (2, 165): 't3*tau2', (2, 32): 't1^-1', (0, 167): 'tau1', (2, 34): 't1^-1', (2, 57): 't3*tau2', (2, 31): 't1^-1', (2, 25): 't1^-1', (2, 154): 't2*tau3^-1*t1^-1', (2, 33): 't1^-1', (0, 143): 'tau3^-1', (0, 12): 't1^-1', (0, 131): 'tau2', (2, 35): 't1^-1', (0, 132): 'tau3^-1*t2', (0, 120): 'tau2*t3', (0, 119): 't2^-1', (2, 105): 'tau3*t2^-1', (2, 107): 'tau3*t2^-1', (2, 97): 't1^-1', (2, 26): 't1^-1', (0, 156): 't2^-1*tau3*t1', (2, 70): 't2*tau3^-1'}