| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (4,6,2) |
| Vertex degrees | {4,4,4,4} |
| 2D vertex symbol | {12.12.12.12}{12.3.3.12}{12.12.3.3}{3.3.3.3} |
| Delaney-Dress Symbol | <2042.2:12:1 3 5 7 9 11 12,2 4 12 8 11 10,1 2 3 6 7 8 9 10 11 12:12 3,4 4 4 4> |
| Dual net | hqc1997 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc5299 | Fmmm | 69 | orthorhombic | {4,4,4,4} | 12 | (4,6) | |
|
sqc11129 | P4/mmm | 123 | tetragonal | {4,4,4,4} | 24 | (4,6) | |
|
sqc10860 | Fddd | 70 | orthorhombic | {4,4,4,4} | 24 | (4,7) | |
|
sqc10861 | I4122 | 98 | tetragonal | {4,4,4,4} | 24 | (4,7) | |
|
sqc10863 | I4122 | 98 | tetragonal | {4,4,4,4} | 24 | (4,7) | |
|
sqc10864 | Fddd | 70 | orthorhombic | {4,4,4,4} | 24 | (4,7) | |
|
sqc10865 | Fddd | 70 | orthorhombic | {4,4,4,4} | 24 | (4,7) | |
|
sqc11125 | I4122 | 98 | tetragonal | {4,4,4,4} | 24 | (4,7) | |
|
sqc11130 | I4122 | 98 | tetragonal | {4,4,4,4} | 24 | (4,7) | |
|
sqc11131 | Fddd | 70 | orthorhombic | {4,4,4,4} | 24 | (4,7) | |
|
sqc11132 | Fddd | 70 | orthorhombic | {4,4,4,4} | 24 | (4,7) | |
|
sqc11133 | I4122 | 98 | tetragonal | {4,4,4,4} | 24 | (4,7) | |
|
sqc858 | Pmmm | 47 | orthorhombic | {4,4,4,4} | 6 | (4,6) | |
|
sqc4892 | P42/mmc | 131 | tetragonal | {4,4,4,4} | 12 | (4,6) | |
|
sqc4896 | P4222 | 93 | tetragonal | {4,4,4,4} | 12 | (4,6) | |
|
sqc4897 | P4222 | 93 | tetragonal | {4,4,4,4} | 12 | (4,6) | |
|
sqc5293 | P42/mmc | 131 | tetragonal | {4,4,4,4} | 12 | (4,6) | |
|
sqc5316 | Cmma | 67 | orthorhombic | {4,4,4,4} | 12 | (4,6) | |
|
sqc5495 | Cmma | 67 | orthorhombic | {4,4,4,4} | 12 | (4,6) | |
|
sqc5498 | P42/mcm | 132 | tetragonal | {4,4,4,4} | 12 | (4,6) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC5165 | *22222a | (4,6,2) | {4,4,4,4} | {12.12.12.12}{12.3.3.12}{12.12.3... | No s‑net |
sqc11125
|
sqc4897
|
![]() |
UQC5166 | *22222a | (4,6,2) | {4,4,4,4} | {12.12.12.12}{12.3.3.12}{12.12.3... |
sqc10691
|
sqc10863
|
sqc4896
|
![]() |
UQC5167 | *22222a | (4,6,2) | {4,4,4,4} | {12.12.12.12}{12.3.3.12}{12.12.3... |
sqc11129
|
sqc11130
|
sqc5498
|
![]() |
UQC5168 | *22222b | (4,6,2) | {4,4,4,4} | {12.12.12.12}{12.3.3.12}{12.12.3... |
sqc4731
|
sqc10865
|
sqc858
|
![]() |
UQC5169 | *22222a | (4,6,2) | {4,4,4,4} | {12.12.12.12}{12.3.3.12}{12.12.3... | No s‑net |
sqc11133
|
sqc5293
|
![]() |
UQC5170 | *22222b | (4,6,2) | {4,4,4,4} | {12.12.12.12}{12.3.3.12}{12.12.3... | No s‑net |
sqc11132
|
sqc858
|
![]() |
UQC5171 | *22222a | (4,6,2) | {4,4,4,4} | {12.12.12.12}{12.3.3.12}{12.12.3... |
sqc10690
|
sqc10861
|
sqc4892
|
![]() |
UQC5172 | *22222b | (4,6,2) | {4,4,4,4} | {12.12.12.12}{12.3.3.12}{12.12.3... |
sqc5299
|
sqc10864
|
sqc858
|
![]() |
UQC5173 | *22222b | (4,6,2) | {4,4,4,4} | {12.12.12.12}{12.3.3.12}{12.12.3... |
sqc858
|
sqc10860
|
sqc5316
|
![]() |
UQC5174 | *22222b | (4,6,2) | {4,4,4,4} | {12.12.12.12}{12.3.3.12}{12.12.3... |
sqc858
|
sqc11131
|
sqc5495
|