h-net: hqc2042


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(4,6,2)
Vertex degrees{4,4,4,4}
2D vertex symbol {12.12.12.12}{12.3.3.12}{12.12.3.3}{3.3.3.3}
Delaney-Dress Symbol <2042.2:12:1 3 5 7 9 11 12,2 4 12 8 11 10,1 2 3 6 7 8 9 10 11 12:12 3,4 4 4 4>
Dual net hqc1997

Derived s-nets

s-nets with faithful topology

21 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc5299 Fmmm 69 orthorhombic {4,4,4,4} 12 (4,6)
Full image sqc11129 P4/mmm 123 tetragonal {4,4,4,4} 24 (4,6)
Full image sqc10860 Fddd 70 orthorhombic {4,4,4,4} 24 (4,7)
Full image sqc10861 I4122 98 tetragonal {4,4,4,4} 24 (4,7)
Full image sqc10863 I4122 98 tetragonal {4,4,4,4} 24 (4,7)
Full image sqc10864 Fddd 70 orthorhombic {4,4,4,4} 24 (4,7)
Full image sqc10865 Fddd 70 orthorhombic {4,4,4,4} 24 (4,7)
Full image sqc11125 I4122 98 tetragonal {4,4,4,4} 24 (4,7)
Full image sqc11130 I4122 98 tetragonal {4,4,4,4} 24 (4,7)
Full image sqc11131 Fddd 70 orthorhombic {4,4,4,4} 24 (4,7)
Full image sqc11132 Fddd 70 orthorhombic {4,4,4,4} 24 (4,7)
Full image sqc11133 I4122 98 tetragonal {4,4,4,4} 24 (4,7)
Full image sqc858 Pmmm 47 orthorhombic {4,4,4,4} 6 (4,6)
Full image sqc4892 P42/mmc 131 tetragonal {4,4,4,4} 12 (4,6)
Full image sqc4896 P4222 93 tetragonal {4,4,4,4} 12 (4,6)
Full image sqc4897 P4222 93 tetragonal {4,4,4,4} 12 (4,6)
Full image sqc5293 P42/mmc 131 tetragonal {4,4,4,4} 12 (4,6)
Full image sqc5316 Cmma 67 orthorhombic {4,4,4,4} 12 (4,6)
Full image sqc5495 Cmma 67 orthorhombic {4,4,4,4} 12 (4,6)
Full image sqc5498 P42/mcm 132 tetragonal {4,4,4,4} 12 (4,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC5165 *22222a (4,6,2) {4,4,4,4} {12.12.12.12}{12.3.3.12}{12.12.3... No s‑net Snet sqc11125 Snet sqc4897
Tiling details UQC5166 *22222a (4,6,2) {4,4,4,4} {12.12.12.12}{12.3.3.12}{12.12.3... Snet sqc10691 Snet sqc10863 Snet sqc4896
Tiling details UQC5167 *22222a (4,6,2) {4,4,4,4} {12.12.12.12}{12.3.3.12}{12.12.3... Snet sqc11129 Snet sqc11130 Snet sqc5498
Tiling details UQC5168 *22222b (4,6,2) {4,4,4,4} {12.12.12.12}{12.3.3.12}{12.12.3... Snet sqc4731 Snet sqc10865 Snet sqc858
Tiling details UQC5169 *22222a (4,6,2) {4,4,4,4} {12.12.12.12}{12.3.3.12}{12.12.3... No s‑net Snet sqc11133 Snet sqc5293
Tiling details UQC5170 *22222b (4,6,2) {4,4,4,4} {12.12.12.12}{12.3.3.12}{12.12.3... No s‑net Snet sqc11132 Snet sqc858
Tiling details UQC5171 *22222a (4,6,2) {4,4,4,4} {12.12.12.12}{12.3.3.12}{12.12.3... Snet sqc10690 Snet sqc10861 Snet sqc4892
Tiling details UQC5172 *22222b (4,6,2) {4,4,4,4} {12.12.12.12}{12.3.3.12}{12.12.3... Snet sqc5299 Snet sqc10864 Snet sqc858
Tiling details UQC5173 *22222b (4,6,2) {4,4,4,4} {12.12.12.12}{12.3.3.12}{12.12.3... Snet sqc858 Snet sqc10860 Snet sqc5316
Tiling details UQC5174 *22222b (4,6,2) {4,4,4,4} {12.12.12.12}{12.3.3.12}{12.12.3... Snet sqc858 Snet sqc11131 Snet sqc5495

Symmetry-lowered hyperbolic tilings