U-tiling: UQC5187
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2047 |
*22222 |
(4,6,2) |
{4,8,4,4} |
{4.4.4.4}{4.4.4.4.4.4.4.4}{4.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc10683
|
|
P4/mmm |
123 |
tetragonal |
{4,7,4,4} |
20 |
(4,6) |
G
|
False
|
|
sqc10833
|
|
I4122 |
98 |
tetragonal |
{4,8,4,4} |
20 |
(4,7) |
D
|
False
|
|
sqc4834
|
|
P4222 |
93 |
tetragonal |
{4,4,4,8} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,8,4,4} |
2D vertex symbol | {4.4.4.4}{4.4.4.4.4.4.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<14.3:192:109 3 5 7 9 11 120 85 15 17 19 21 23 96 133 27 29 31 33 35 144 121 39 41 43 45 47 132 157 51 53 55 57 59 168 145 63 65 67 69 71 156 181 75 77 79 81 83 192 87 89 91 93 95 169 99 101 103 105 107 180 111 113 115 117 119 123 125 127 129 131 135 137 139 141 143 147 149 151 153 155 159 161 163 165 167 171 173 175 177 179 183 185 187 189 191,2 12 6 11 8 10 14 24 18 23 20 22 26 36 30 35 32 34 38 48 42 47 44 46 50 60 54 59 56 58 62 72 66 71 68 70 74 84 78 83 80 82 86 96 90 95 92 94 98 108 102 107 104 106 110 120 114 119 116 118 122 132 126 131 128 130 134 144 138 143 140 142 146 156 150 155 152 154 158 168 162 167 164 166 170 180 174 179 176 178 182 192 186 191 188 190,25 4 5 30 31 20 21 34 35 60 37 16 17 42 43 46 47 72 28 29 44 45 84 40 41 108 73 52 53 78 79 92 93 82 83 97 64 65 102 103 116 117 106 107 76 77 128 129 121 88 89 126 127 130 131 156 100 101 140 141 133 112 113 138 139 142 143 168 124 125 180 136 137 192 169 148 149 174 175 164 165 178 179 181 160 161 186 187 190 191 172 173 188 189 184 185:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,4 8 4 4 4 8 4 4 4 4 4 4 4 8 4 8 4 4 4 4> {(2, 188): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 189): 't1^-1*tau3^-1*t2', (2, 190): 't1^-1*tau3^-1*t2', (2, 191): 't1^-1', (2, 56): 't3', (2, 185): 'tau2^-1*t3^-1', (2, 186): 'tau2^-1*t3^-1', (2, 187): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 180): 'tau2^-1*t3^-1', (2, 53): 't3*tau2', (2, 54): 't3*tau2', (2, 55): 't3', (2, 48): 't3*tau2', (2, 177): 'tau2*t3', (2, 178): 'tau2*t3', (2, 44): 't1', (2, 173): 't1*tau3*t2^-1', (2, 174): 't1*tau3*t2^-1', (2, 47): 't1', (2, 168): 't1*tau3*t2^-1', (2, 164): 'tau1', (0, 35): 't1^-1', (2, 60): 't2*tau3^-1', (2, 102): 'tau3*t2^-1', (2, 163): 'tau1', (2, 29): 't1^-1', (0, 24): 't1^-1', (2, 31): 't1^-1', (2, 24): 't1^-1', (2, 22): 't1^-1', (2, 140): 'tau3^-1', (2, 141): 'tau3^-1*t2', (2, 142): 'tau3^-1*t2', (2, 139): 'tau3^-1', (2, 128): 'tau2', (2, 129): 'tau2*t3', (2, 130): 'tau2*t3', (2, 127): 'tau2', (2, 116): 't2^-1', (2, 30): 't1^-1', (2, 115): 't2^-1', (0, 107): 't1^-1', (2, 101): 'tau3*t2^-1', (0, 96): 't1^-1', (2, 45): 't1'}