U-tiling: UQC5188
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2047 |
*22222 |
(4,6,2) |
{4,8,4,4} |
{4.4.4.4}{4.4.4.4.4.4.4.4}{4.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10837
|
|
P4/mmm |
123 |
tetragonal |
{4,8,4,4} |
20 |
(4,6) |
G
|
False
|
|
sqc10835
|
|
I4122 |
98 |
tetragonal |
{4,8,4,4} |
20 |
(4,7) |
D
|
False
|
|
sqc5009
|
|
P4222 |
93 |
tetragonal |
{4,8,4,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,8,4,4} |
2D vertex symbol | {4.4.4.4}{4.4.4.4.4.4.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<14.5:192:13 3 5 7 9 11 24 15 17 19 21 23 37 27 29 31 33 35 48 39 41 43 45 47 85 51 53 55 57 59 96 109 63 65 67 69 71 120 121 75 77 79 81 83 132 87 89 91 93 95 133 99 101 103 105 107 144 111 113 115 117 119 123 125 127 129 131 135 137 139 141 143 157 147 149 151 153 155 168 159 161 163 165 167 181 171 173 175 177 179 192 183 185 187 189 191,2 12 6 11 8 10 14 24 18 23 20 22 26 36 30 35 32 34 38 48 42 47 44 46 50 60 54 59 56 58 62 72 66 71 68 70 74 84 78 83 80 82 86 96 90 95 92 94 98 108 102 107 104 106 110 120 114 119 116 118 122 132 126 131 128 130 134 144 138 143 140 142 146 156 150 155 152 154 158 168 162 167 164 166 170 180 174 179 176 178 182 192 186 191 188 190,25 4 5 30 31 56 57 118 119 36 37 16 17 42 43 68 69 94 95 48 28 29 80 81 142 143 40 41 104 105 130 131 73 52 53 78 79 166 167 84 97 64 65 102 103 154 155 108 76 77 190 191 121 88 89 126 127 152 153 132 100 101 178 179 133 112 113 138 139 164 165 144 124 125 176 177 136 137 188 189 169 148 149 174 175 180 181 160 161 186 187 192 172 173 184 185:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,4 8 4 4 4 8 4 4 4 4 4 8 4 8 4 4 4 4 4 4> {(2, 188): 't1^-1', (0, 59): 't3', (2, 191): 'tau2^-1*t3^-1', (0, 191): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 60): 't2', (2, 59): 't3*tau2', (2, 180): 't1^-1*tau3^-1*t2', (0, 48): 't3', (2, 177): 't1', (0, 180): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 179): 't1*tau3*t2^-1', (2, 44): 't1', (2, 173): 'tau2*t3', (2, 168): 'tau2*t3', (0, 47): 't1', (2, 42): 't1', (2, 43): 't1', (2, 36): 't1', (2, 33): 't1^-1', (2, 162): 't2^-1*tau3*t1', (2, 185): 't1^-1*tau3^-1*t2', (0, 155): 'tau1^-1', (0, 24): 't1^-1', (0, 156): 'tau1', (2, 150): 't3^-1*tau2^-1', (2, 187): 't1^-1', (2, 17): 't1^-1', (2, 34): 't1^-1', (2, 138): 'tau3^-1*t2', (2, 11): 't1', (2, 132): 'tau3^-1*t2', (0, 131): 'tau2', (2, 137): 'tau3^-1*t2', (2, 125): 'tau2*t3', (0, 120): 'tau2', (2, 120): 'tau2*t3', (0, 107): 'tau3', (2, 178): 't1', (2, 107): 'tau3*t2^-1', (2, 126): 'tau2*t3', (0, 96): 'tau3', (0, 71): 't2'}