U-tiling: UQC5194
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2047 |
*22222 |
(4,6,2) |
{4,8,4,4} |
{4.4.4.4}{4.4.4.4.4.4.4.4}{4.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10840
|
|
P4/mmm |
123 |
tetragonal |
{4,8,4,4} |
20 |
(4,6) |
G
|
False
|
|
sqc10839
|
|
I4122 |
98 |
tetragonal |
{4,8,4,4} |
20 |
(4,7) |
D
|
False
|
|
sqc5317
|
|
P4222 |
93 |
tetragonal |
{8,4,4,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,8,4,4} |
2D vertex symbol | {4.4.4.4}{4.4.4.4.4.4.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<14.2:192:49 3 5 7 9 11 60 61 15 17 19 21 23 72 73 27 29 31 33 35 84 97 39 41 43 45 47 108 51 53 55 57 59 63 65 67 69 71 75 77 79 81 83 145 87 89 91 93 95 156 99 101 103 105 107 157 111 113 115 117 119 168 169 123 125 127 129 131 180 181 135 137 139 141 143 192 147 149 151 153 155 159 161 163 165 167 171 173 175 177 179 183 185 187 189 191,2 12 6 11 8 10 14 24 18 23 20 22 26 36 30 35 32 34 38 48 42 47 44 46 50 60 54 59 56 58 62 72 66 71 68 70 74 84 78 83 80 82 86 96 90 95 92 94 98 108 102 107 104 106 110 120 114 119 116 118 122 132 126 131 128 130 134 144 138 143 140 142 146 156 150 155 152 154 158 168 162 167 164 166 170 180 174 179 176 178 182 192 186 191 188 190,109 4 5 114 115 32 33 22 23 36 85 16 17 90 91 44 45 48 133 28 29 138 139 46 47 121 40 41 126 127 157 52 53 162 163 80 81 94 95 84 145 64 65 150 151 104 105 118 119 108 181 76 77 186 187 130 131 88 89 128 129 132 169 100 101 174 175 142 143 112 113 140 141 144 124 125 136 137 148 149 176 177 166 167 180 160 161 188 189 192 172 173 190 191 184 185:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,4 8 4 4 4 4 4 4 4 8 4 4 4 8 4 4 4 4 8 4> {(2, 188): 'tau2^-1*t3^-1', (2, 189): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 190): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 191): 't1^-1*tau3^-1*t2', (2, 56): 't3*tau2', (2, 57): 't3', (2, 58): 't3', (2, 187): 'tau2^-1*t3^-1', (2, 55): 't3*tau2', (2, 176): 't1*tau3*t2^-1', (2, 179): 'tau2*t3', (2, 45): 't1', (2, 46): 't1', (2, 175): 't1*tau3*t2^-1', (2, 168): 't1', (0, 47): 't1', (2, 165): 'tau1', (2, 166): 'tau1', (2, 32): 't1^-1', (0, 36): 't1', (0, 191): 't1^-1', (2, 29): 't1^-1', (2, 30): 't1^-1', (2, 31): 't1^-1', (2, 24): 't1^-1', (2, 23): 't1^-1', (2, 141): 'tau3^-1', (2, 142): 'tau3^-1', (2, 143): 'tau3^-1*t2', (0, 132): 't1', (2, 117): 't2^-1', (2, 118): 't2^-1', (2, 101): 't1^-1', (2, 102): 't1^-1', (2, 95): 't3^-1*tau2^-1', (2, 81): 'tau2^-1', (2, 82): 'tau2^-1', (2, 68): 't2*tau3^-1', (2, 67): 't2*tau3^-1'}