U-tiling: UQC5198
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc211 |
*2224 |
(2,4,2) |
{4,4} |
{8.4.4.8}{4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5521
|
|
Fmmm |
69 |
orthorhombic |
{4,4,4,4} |
12 |
(4,6) |
G
|
False
|
|
sqc11209
|
|
Fddd |
70 |
orthorhombic |
{4,4,4,4} |
24 |
(4,7) |
D
|
False
|
|
sqc5583
|
|
Cmma |
67 |
orthorhombic |
{4,4,4,4} |
12 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {8.4.4.8}{8.8.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<15.1:192:25 3 5 7 9 11 24 37 15 17 19 21 23 27 29 31 33 35 48 39 41 43 45 47 73 51 53 55 57 59 72 85 63 65 67 69 71 75 77 79 81 83 96 87 89 91 93 95 145 99 101 103 105 107 132 157 111 113 115 117 119 144 169 123 125 127 129 131 181 135 137 139 141 143 147 149 151 153 155 180 159 161 163 165 167 192 171 173 175 177 179 183 185 187 189 191,2 12 6 11 8 10 14 24 18 23 20 22 26 36 30 35 32 34 38 48 42 47 44 46 50 60 54 59 56 58 62 72 66 71 68 70 74 84 78 83 80 82 86 96 90 95 92 94 98 108 102 107 104 106 110 120 114 119 116 118 122 132 126 131 128 130 134 144 138 143 140 142 146 156 150 155 152 154 158 168 162 167 164 166 170 180 174 179 176 178 182 192 186 191 188 190,109 4 5 114 115 104 105 58 59 60 133 16 17 138 139 128 129 70 71 72 157 28 29 162 163 152 153 82 83 84 181 40 41 186 187 176 177 94 95 96 121 52 53 126 127 140 141 97 64 65 102 103 116 117 169 76 77 174 175 188 189 145 88 89 150 151 164 165 100 101 142 143 144 112 113 130 131 132 124 125 136 137 148 149 190 191 192 160 161 178 179 180 172 173 184 185:8 4 4 4 4 8 4 4 4 4 8 4 8 4 4 4 4 4 4 4,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 60): 't3^-1', (2, 189): 'tau3*t1*tau2^-1', (2, 190): 'tau3*t1*tau2^-1', (2, 191): 'tau3*t1*tau2^-1', (0, 191): 't2*tau1*t3^-1', (2, 53): 't2^-1', (2, 54): 't2^-1', (2, 48): 't2^-1', (2, 177): 'tau3^-1*t1^-1*tau2', (2, 178): 'tau3^-1*t1^-1*tau2', (2, 179): 'tau3^-1*t1^-1*tau2', (2, 44): 'tau3', (2, 45): 't1^-1', (0, 168): 't2^-1', (2, 47): 't1^-1', (2, 188): 'tau3', (2, 43): 'tau3', (2, 164): 'tau2^-1', (2, 32): 'tau2^-1', (2, 33): 't1^-1', (2, 34): 't1^-1', (2, 35): 't1^-1', (0, 155): 't3^-1*tau1*t2', (2, 31): 'tau2^-1', (0, 144): 't3^-1', (2, 17): 't2', (2, 18): 't2', (2, 12): 't2', (0, 143): 'tau1', (2, 5): 't3', (2, 6): 't3', (2, 163): 'tau2^-1', (2, 0): 't3', (0, 132): 't2^-1', (0, 107): 'tau1', (0, 108): 't3^-1', (2, 101): 't3', (2, 102): 't3', (2, 46): 't1^-1', (2, 79): 'tau3^-1'}