U-tiling: UQC5302
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1886 |
*2323 |
(5,5,2) |
{3,4,3,4,3} |
{7.4.7}{7.7.4.4}{4.4.4}{7.7.7.7}... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12575
|
|
P4232 |
208 |
cubic |
{3,4,3,4,3} |
38 |
(5,5) |
G
|
False
|
|
sqc12569
|
|
I213 |
199 |
cubic |
{3,4,3,4,3} |
38 |
(5,6) |
D
|
False
|
|
sqc12570
|
|
F-43m |
216 |
cubic |
{3,4,3,4,3} |
38 |
(5,5) |
Topological data
Vertex degrees | {3,4,3,4,3} |
2D vertex symbol | {7.4.7}{7.7.4.4}{4.4.4}{7.7.7.7}{7.7.7} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<64.1:264:34 3 5 7 9 11 56 14 16 18 20 22 133 25 27 29 31 33 36 38 40 42 44 199 47 49 51 53 55 58 60 62 64 66 232 69 71 73 75 77 111 80 82 84 86 88 155 91 93 95 97 99 177 102 104 106 108 110 113 115 117 119 121 210 124 126 128 130 132 135 137 139 141 143 243 146 148 150 152 154 157 159 161 163 165 221 168 170 172 174 176 179 181 183 185 187 254 190 192 194 196 198 201 203 205 207 209 212 214 216 218 220 223 225 227 229 231 234 236 238 240 242 245 247 249 251 253 256 258 260 262 264,2 8 15 6 18 10 44 13 19 17 21 66 24 30 48 28 51 32 143 35 41 59 39 62 43 46 52 50 54 209 57 63 61 65 68 74 92 72 95 76 242 79 85 103 83 106 87 121 90 96 94 98 165 101 107 105 109 187 112 118 180 116 183 120 123 129 191 127 194 131 220 134 140 202 138 205 142 145 151 224 149 227 153 253 156 162 235 160 238 164 167 173 246 171 249 175 231 178 184 182 186 189 195 193 197 264 200 206 204 208 211 217 257 215 260 219 222 228 226 230 233 239 237 241 244 250 248 252 255 261 259 263,12 4 5 28 29 30 31 87 88 15 16 72 73 74 75 175 176 45 26 27 131 132 56 37 38 149 150 151 152 164 165 48 49 94 95 96 97 230 231 59 60 182 183 184 185 208 209 89 70 71 219 220 100 81 82 127 128 129 130 92 93 120 121 103 104 237 238 239 240 252 253 177 114 115 226 227 228 229 188 125 126 199 136 137 248 249 250 251 241 242 221 147 148 197 198 232 158 159 193 194 195 196 243 169 170 215 216 217 218 180 181 263 264 191 192 202 203 259 260 261 262 254 213 214 224 225 235 236 246 247 257 258:7 4 7 7 4 4 7 7 4 7 4 7 7 4 7 4 4 7 4 4 7 4 7 4,3 4 3 4 3 4 4 3 3 3 3 4 3 4 4 4 4 4 3 3 4 3 4 4 3 3 4 3 3 4 3 3 3 4 3 4 4 3> {(1, 120): 't1', (2, 184): 'tau2', (2, 185): 'tau2*t3*tau1^-1', (2, 186): 'tau2*t3*tau1^-1', (1, 248): 'tau1^-1', (2, 181): 'tau2', (2, 182): 'tau2', (2, 183): 'tau2', (1, 245): 'tau1^-1', (1, 105): 'tau3^-1', (1, 109): 'tau3^-1*t1^-1', (2, 42): 't1^-1', (2, 164): 't1', (2, 165): 'tau1', (1, 226): 'tau2', (2, 160): 'tau3^-1', (2, 161): 'tau3^-1', (2, 162): 'tau3^-1', (1, 102): 'tau3^-1', (1, 252): 'tau1^-1*t3*tau2', (1, 219): 't2^-1', (2, 159): 'tau3^-1', (2, 152): 't1^-1*tau3^-1', (2, 153): 't1^-1*tau3^-1', (1, 223): 'tau2', (0, 253): 't2^-1', (2, 141): 't2', (2, 142): 't2', (2, 143): 'tau2^-1', (0, 143): 'tau2^-1*t3^-1*tau1', (0, 165): 't3', (1, 197): 't2', (2, 252): 't2', (0, 121): 't2', (2, 251): 't2', (0, 110): 't1', (1, 175): 't3', (0, 99): 'tau3^-1*t1^-1', (2, 99): 'tau3^-1', (2, 208): 't3^-1', (2, 204): 'tau1^-1', (2, 205): 'tau1^-1', (2, 206): 'tau1^-1', (2, 207): 't3^-1', (2, 203): 'tau1^-1'}