U-tiling: UQC5350
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2026 |
*22222 |
(5,6,2) |
{4,3,3,4,4} |
{5.5.5.5}{5.7.5}{5.7.7}{7.7.7.7}... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc4733
|
|
Fmmm |
69 |
orthorhombic |
{3,3,3,4,4} |
14 |
(5,6) |
G
|
False
|
|
sqc10854
|
|
Fddd |
70 |
orthorhombic |
{4,3,3,4,4} |
28 |
(5,7) |
D
|
False
|
|
sqc4893
|
|
Cmma |
67 |
orthorhombic |
{4,4,4,3,3} |
14 |
(5,6) |
Topological data
Vertex degrees | {4,3,3,4,4} |
2D vertex symbol | {5.5.5.5}{5.7.5}{5.7.7}{7.7.7.7}{7.7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<68.3:192:97 3 5 7 9 11 24 121 15 17 19 21 23 145 27 29 31 33 35 48 169 39 41 43 45 47 133 51 53 55 57 59 72 109 63 65 67 69 71 181 75 77 79 81 83 96 157 87 89 91 93 95 99 101 103 105 107 132 111 113 115 117 119 144 123 125 127 129 131 135 137 139 141 143 147 149 151 153 155 180 159 161 163 165 167 192 171 173 175 177 179 183 185 187 189 191,2 4 101 18 8 10 12 14 16 125 20 22 24 26 28 149 42 32 34 36 38 40 173 44 46 48 50 52 137 66 56 58 60 62 64 113 68 70 72 74 76 185 90 80 82 84 86 88 161 92 94 96 98 100 126 104 106 108 110 112 138 116 118 120 122 124 128 130 132 134 136 140 142 144 146 148 174 152 154 156 158 160 186 164 166 168 170 172 176 178 180 182 184 188 190 192,49 14 15 6 7 104 105 118 119 36 61 18 19 128 129 142 143 48 73 38 39 30 31 152 153 166 167 85 42 43 176 177 190 191 62 63 54 55 140 141 130 131 84 66 67 116 117 106 107 96 86 87 78 79 188 189 178 179 90 91 164 165 154 155 133 122 123 102 103 156 121 134 135 114 115 168 126 127 180 138 139 192 181 170 171 150 151 169 182 183 162 163 174 175 186 187:5 7 5 5 7 5 5 7 5 5 7 5 7 7 7 7,4 3 3 4 4 3 4 4 4 3 3 4 3 4 3 3 4 3 4 3 3 3 4 3 3 4 3 3> {(2, 188): 'tau3', (2, 191): 't2', (1, 125): 'tau1^-1', (2, 187): 'tau3', (2, 180): 'tau3*t1*tau2^-1', (2, 181): 't2*tau1*t3^-1', (2, 182): 't2*tau1*t3^-1', (2, 176): 'tau3^-1', (2, 179): 't2^-1', (2, 36): 't1^-1', (2, 175): 'tau3^-1', (2, 168): 'tau3^-1*t1^-1*tau2', (2, 169): 't2^-1*tau1^-1*t3', (2, 170): 't2^-1*tau1^-1*t3', (2, 164): 'tau2^-1', (2, 167): 't3', (0, 167): 't3*tau1^-1*t2^-1', (0, 36): 'tau3', (2, 163): 'tau2^-1', (1, 88): 'tau2', (2, 152): 'tau2', (2, 155): 't3^-1', (0, 144): 'tau2', (2, 151): 'tau2', (2, 9): 't3', (1, 113): 'tau1^-1', (2, 142): 't2^-1', (1, 76): 'tau3^-1', (2, 10): 't3', (0, 179): 't2^-1*tau1^-1*t3', (2, 133): 'tau1', (2, 134): 'tau1', (2, 129): 't2', (2, 130): 't2', (0, 143): 'tau1', (1, 185): 't2*tau1*t3^-1', (2, 121): 'tau1^-1', (2, 122): 'tau1^-1', (1, 40): 'tau3', (1, 173): 't2^-1*tau1^-1*t3', (2, 141): 't2^-1', (2, 106): 't3', (0, 131): 'tau1^-1', (2, 24): 't1^-1', (1, 28): 'tau2^-1', (0, 84): 'tau2', (0, 72): 'tau3^-1', (2, 69): 't3^-1'}