U-tiling: UQC5355
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2026 |
*22222 |
(5,6,2) |
{4,3,3,4,4} |
{5.5.5.5}{5.7.5}{5.7.7}{7.7.7.7}... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
G
|
False
|
|
sqc10830
|
|
Fddd |
70 |
orthorhombic |
{4,3,3,4,4} |
28 |
(5,7) |
Topological data
Vertex degrees | {4,3,3,4,4} |
2D vertex symbol | {5.5.5.5}{5.7.5}{5.7.7}{7.7.7.7}{7.7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<68.5:192:13 3 5 7 9 11 120 15 17 19 21 23 144 37 27 29 31 33 35 168 39 41 43 45 47 192 61 51 53 55 57 59 132 63 65 67 69 71 108 85 75 77 79 81 83 180 87 89 91 93 95 156 121 99 101 103 105 107 133 111 113 115 117 119 123 125 127 129 131 135 137 139 141 143 169 147 149 151 153 155 181 159 161 163 165 167 171 173 175 177 179 183 185 187 189 191,2 4 17 114 8 10 12 14 16 138 20 22 24 26 28 41 162 32 34 36 38 40 186 44 46 48 50 52 65 126 56 58 60 62 64 102 68 70 72 74 76 89 174 80 82 84 86 88 150 92 94 96 98 100 125 104 106 108 110 112 137 116 118 120 122 124 128 130 132 134 136 140 142 144 146 148 173 152 154 156 158 160 185 164 166 168 170 172 176 178 180 182 184 188 190 192,25 110 111 6 7 20 21 58 59 108 37 134 135 18 19 70 71 132 158 159 30 31 44 45 82 83 156 182 183 42 43 94 95 180 73 122 123 54 55 68 69 144 85 98 99 66 67 120 170 171 78 79 92 93 192 146 147 90 91 168 145 102 103 128 129 142 143 157 114 115 140 141 130 131 169 126 127 181 138 139 150 151 176 177 190 191 162 163 188 189 178 179 174 175 186 187:5 7 7 5 7 7 5 7 7 5 7 7 5 5 5 5,4 3 3 4 4 4 3 4 3 3 4 4 3 4 4 3 3 4 3 3 3 3 3 4 3 3 4 3> {(2, 188): 't2*tau1*t3^-1', (0, 59): 't2^-1', (2, 190): 'tau3*t1*tau2^-1', (2, 191): 'tau3', (1, 125): 't2', (1, 124): 'tau1^-1', (2, 189): 'tau3*t1*tau2^-1', (2, 180): 't2', (1, 112): 'tau1^-1', (2, 176): 't2^-1*tau1^-1*t3', (2, 177): 'tau3^-1*t1^-1*tau2', (2, 178): 'tau3^-1*t1^-1*tau2', (2, 179): 'tau3^-1', (2, 45): 't1^-1', (2, 46): 't1^-1', (2, 175): 't2^-1*tau1^-1*t3', (2, 168): 't2^-1', (2, 167): 'tau2^-1', (1, 101): 't3', (2, 33): 't1^-1', (2, 34): 't1^-1', (2, 163): 't3*tau1^-1*t2^-1', (2, 156): 't3', (0, 156): 't3*tau1^-1*t2^-1', (2, 155): 'tau2', (0, 144): 't3^-1*tau1*t2', (2, 144): 't3^-1', (0, 23): 't2', (2, 140): 'tau1', (0, 11): 't3', (2, 139): 'tau1', (2, 61): 't3^-1', (2, 133): 't2^-1', (2, 134): 't2^-1', (2, 128): 'tau1^-1', (2, 1): 't3', (2, 2): 't3', (1, 184): 't2*tau1*t3^-1', (0, 120): 'tau1^-1', (2, 127): 'tau1^-1', (2, 62): 't3^-1', (2, 49): 't2^-1', (0, 107): 't3', (2, 50): 't2^-1', (0, 108): 'tau1^-1', (1, 17): 't2', (1, 5): 't3', (1, 172): 't2^-1*tau1^-1*t3'}