U-tiling: UQC5395
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2052 |
*22222 |
(5,5,2) |
{3,6,4,4,4} |
{4.5.5}{4.5.5.4.5.5}{5.5.5.5}{5.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5437
|
|
Fmmm |
69 |
orthorhombic |
{3,4,4,6,4} |
12 |
(5,5) |
G
|
False
|
|
sqc11068
|
|
Fddd |
70 |
orthorhombic |
{3,6,4,4,4} |
24 |
(5,6) |
D
|
False
|
|
sqc5434
|
|
Cmma |
67 |
orthorhombic |
{3,4,4,4,6} |
12 |
(5,5) |
Topological data
Vertex degrees | {3,6,4,4,4} |
2D vertex symbol | {4.5.5}{4.5.5.4.5.5}{5.5.5.5}{5.5.5.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<16.2:192:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192,109 98 5 12 7 9 11 133 122 17 24 19 21 23 157 146 29 36 31 33 35 181 170 41 48 43 45 47 121 134 53 60 55 57 59 97 110 65 72 67 69 71 169 182 77 84 79 81 83 145 158 89 96 91 93 95 101 108 103 105 107 113 120 115 117 119 125 132 127 129 131 137 144 139 141 143 149 156 151 153 155 161 168 163 165 167 173 180 175 177 179 185 192 187 189 191,3 4 113 114 31 32 21 22 59 60 15 16 137 138 43 44 71 72 27 28 161 162 45 46 83 84 39 40 185 186 95 96 51 52 125 126 79 80 69 70 63 64 101 102 91 92 75 76 173 174 93 94 87 88 149 150 99 100 151 152 129 130 143 144 111 112 163 164 141 142 131 132 123 124 175 176 135 136 187 188 147 148 177 178 191 192 159 160 189 190 179 180 171 172 183 184:4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5,3 6 4 4 4 3 6 4 3 6 4 3 6 3 4 4 3 4 3 3 4 4 4 4> {(2, 188): 't2*tau1*t3^-1', (2, 189): 't2*tau1*t3^-1', (2, 190): 'tau3*t1*tau2^-1', (2, 191): 'tau3*t1*tau2^-1', (2, 186): 't2', (1, 120): 't2', (2, 52): 't2^-1', (2, 53): 't2^-1', (2, 176): 't2^-1*tau1^-1*t3', (2, 177): 't2^-1*tau1^-1*t3', (2, 178): 'tau3^-1*t1^-1*tau2', (2, 179): 'tau3^-1*t1^-1*tau2', (2, 46): 't1^-1', (2, 47): 't1^-1', (1, 108): 't3^-1', (1, 96): 't3', (2, 34): 't1^-1', (2, 35): 't1^-1', (1, 73): 'tau3^-1', (2, 150): 't3^-1', (2, 187): 't2', (2, 16): 't2', (2, 17): 't2', (1, 85): 'tau2', (2, 140): 'tau1', (2, 141): 'tau1', (2, 5): 't3', (2, 163): 't3', (2, 128): 'tau1^-1', (2, 129): 'tau1^-1', (2, 151): 't3^-1', (2, 126): 't2', (2, 127): 't2', (2, 112): 't3^-1', (2, 114): 't3^-1', (1, 169): 'tau3^-1', (2, 100): 't3', (2, 101): 't3', (1, 25): 'tau2^-1', (1, 12): 't2'}