U-tiling: UQC5396
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc2052 |
*22222 |
(5,5,2) |
{3,6,4,4,4} |
{4.5.5}{4.5.5.4.5.5}{5.5.5.5}{5.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5438
|
|
Fmmm |
69 |
orthorhombic |
{3,4,6,4,4} |
12 |
(5,5) |
G
|
False
|
|
sqc11075
|
|
Fddd |
70 |
orthorhombic |
{3,6,4,4,4} |
24 |
(5,6) |
D
|
False
|
|
sqc5340
|
|
Cmma |
67 |
orthorhombic |
{6,3,4,4,4} |
12 |
(5,5) |
Topological data
Vertex degrees | {3,6,4,4,4} |
2D vertex symbol | {4.5.5}{4.5.5.4.5.5}{5.5.5.5}{5.5.5.5}{5.5.5.5} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<16.3:192:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192,97 50 5 12 7 9 11 121 62 17 24 19 21 23 145 74 29 36 31 33 35 169 86 41 48 43 45 47 133 53 60 55 57 59 109 65 72 67 69 71 181 77 84 79 81 83 157 89 96 91 93 95 134 101 108 103 105 107 122 113 120 115 117 119 125 132 127 129 131 137 144 139 141 143 182 149 156 151 153 155 170 161 168 163 165 167 173 180 175 177 179 185 192 187 189 191,3 4 101 102 115 116 33 34 23 24 15 16 125 126 139 140 45 46 27 28 149 150 163 164 47 48 39 40 173 174 187 188 51 52 137 138 127 128 81 82 71 72 63 64 113 114 103 104 93 94 75 76 185 186 175 176 95 96 87 88 161 162 151 152 99 100 153 154 131 132 111 112 165 166 143 144 123 124 177 178 135 136 189 190 147 148 179 180 159 160 191 192 171 172 183 184:4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5,3 6 4 4 4 3 4 4 3 6 4 3 4 3 4 4 3 4 3 3 6 4 4 6> {(2, 188): 't2', (2, 189): 't2', (2, 190): 't2*tau1*t3^-1', (2, 191): 't2*tau1*t3^-1', (2, 184): 'tau3', (2, 185): 'tau3', (2, 54): 't2^-1', (2, 55): 't2^-1', (2, 176): 't2^-1', (2, 177): 't2^-1', (2, 178): 't2^-1*tau1^-1*t3', (2, 179): 't2^-1*tau1^-1*t3', (2, 172): 'tau3^-1', (2, 173): 'tau3^-1', (2, 164): 't3', (2, 165): 't3', (2, 160): 'tau2^-1', (2, 161): 'tau2^-1', (2, 28): 'tau2^-1', (2, 29): 'tau2^-1', (2, 152): 't3^-1', (2, 153): 't3^-1', (1, 85): 't1', (1, 84): 'tau2', (2, 18): 't2', (2, 19): 't2', (1, 72): 'tau3^-1', (2, 142): 'tau1', (2, 143): 'tau1', (2, 6): 't3', (2, 7): 't3', (2, 130): 'tau1^-1', (2, 131): 'tau1^-1', (1, 181): 'tau3*t1*tau2^-1', (1, 169): 'tau3^-1*t1^-1*tau2', (1, 168): 'tau3^-1', (2, 102): 't3', (2, 103): 't3', (1, 25): 't1^-1', (1, 24): 'tau2^-1'}