U-tiling: UQC5524
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2203 |
*222222 |
(5,7,2) |
{4,3,4,4,4} |
{10.10.10.10}{10.3.10}{10.10.3.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc1045
|
|
Pmmm |
47 |
orthorhombic |
{4,3,4,4,4} |
7 |
(5,7) |
G
|
False
|
|
sqc5874
|
|
C2/c |
15 |
monoclinic |
{4,3,4,4,4} |
14 |
(5,8) |
D
|
False
|
|
sqc5872
|
|
Imma |
74 |
orthorhombic |
{4,3,4,4,4} |
14 |
(5,7) |
Topological data
Vertex degrees | {4,3,4,4,4} |
2D vertex symbol | {10.10.10.10}{10.3.10}{10.10.3.3}{10.10.10.10}{10.10.10.10} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<122.1:104:14 3 5 7 60 10 12 26 16 18 20 86 23 25 40 29 31 33 99 36 38 52 42 44 46 73 49 51 79 55 57 59 62 64 91 92 68 70 72 75 77 104 81 83 85 88 90 94 96 98 101 103,2 4 9 58 8 11 13 15 17 22 84 21 24 26 28 30 35 97 34 37 39 41 43 48 71 47 50 52 54 56 61 60 63 65 67 69 74 73 76 78 80 82 87 86 89 91 93 95 100 99 102 104,27 54 55 6 7 73 74 75 63 64 39 40 80 81 19 20 99 100 101 89 90 52 93 94 32 33 86 87 88 102 103 67 68 45 46 60 61 62 76 77 92 58 59 104 79 71 72 91 84 85 97 98:10 3 3 10 3 3 10 10,4 3 4 4 4 4 3 4 4 4 3 4 3 4> {(2, 60): 't3', (2, 61): 't3', (2, 59): 't3', (2, 52): 't3*tau2*t1^-1*tau3^-1*t2', (2, 53): 't3*tau2', (2, 54): 't3*tau2', (0, 52): 'tau1', (2, 40): 'tau2*t3', (2, 41): 'tau2*t3', (1, 96): 't2^-1*tau3', (2, 39): 't1', (2, 33): 't2^-1', (2, 34): 't2^-1', (2, 35): 't2^-1', (2, 28): 'tau3^-1*t2', (0, 33): 'tau3^-1*t2', (2, 26): 't1', (2, 27): 'tau3^-1*t2', (2, 20): 't2', (2, 21): 't2', (0, 72): 't3^-1*tau2^-1', (0, 20): 'tau3*t2^-1', (2, 14): 'tau3*t2^-1', (2, 15): 'tau3*t2^-1', (2, 8): 't3', (2, 9): 't3', (0, 7): 'tau2^-1*t3^-1', (1, 70): 't3^-1*tau2^-1', (1, 57): 't3*tau2', (2, 100): 't2^-1', (0, 103): 'tau1', (0, 90): 'tau1^-1', (0, 91): 'tau1', (1, 18): 'tau3*t2^-1', (2, 78): 't2*tau3^-1*t1^-1*tau2*t3', (2, 72): 't3^-1'}