U-tiling: UQC5617
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc2230 |
*22222 |
(5,6,2) |
{4,4,6,4,4} |
{5.5.5.5}{5.4.4.5}{5.4.4.5.4.4}{... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5906
|
|
Fmmm |
69 |
orthorhombic |
{4,4,6,4,4} |
12 |
(5,6) |
G
|
False
|
|
sqc11412
|
|
Fddd |
70 |
orthorhombic |
{4,4,6,4,4} |
24 |
(5,7) |
D
|
False
|
|
sqc5757
|
|
Cmma |
67 |
orthorhombic |
{4,4,6,4,4} |
12 |
(5,6) |
Topological data
Vertex degrees | {4,4,6,4,4} |
2D vertex symbol | {5.5.5.5}{5.4.4.5}{5.4.4.5.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<20.4:208:53 3 5 7 9 11 13 66 16 18 20 22 24 26 79 29 31 33 35 37 39 92 42 44 46 48 50 52 55 57 59 61 63 65 68 70 72 74 76 78 81 83 85 87 89 91 94 96 98 100 102 104 144 107 109 111 113 115 117 131 120 122 124 126 128 130 133 135 137 139 141 143 146 148 150 152 154 156 196 159 161 163 165 167 169 183 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208,2 4 57 8 13 10 12 15 17 70 21 26 23 25 28 30 83 34 39 36 38 41 43 96 47 52 49 51 54 56 60 65 62 64 67 69 73 78 75 77 80 82 86 91 88 90 93 95 99 104 101 103 106 108 148 112 117 114 116 119 121 135 125 130 127 129 132 134 138 143 140 142 145 147 151 156 153 155 158 160 200 164 169 166 168 171 173 187 177 182 179 181 184 186 190 195 192 194 197 199 203 208 205 207,14 28 29 6 7 34 35 127 128 116 117 41 42 19 20 47 48 153 154 142 143 40 32 33 179 180 168 169 45 46 205 206 194 195 66 80 81 58 59 86 87 140 141 155 156 93 94 71 72 99 100 114 115 129 130 92 84 85 192 193 207 208 97 98 166 167 181 182 131 158 159 110 111 164 165 144 171 172 123 124 177 178 184 185 136 137 190 191 197 198 149 150 203 204 183 162 163 196 175 176 188 189 201 202:5 4 5 4 5 4 5 4 4 4 4 4 5 4 5 4 4 4 5 4 5 4 4 4,4 4 6 4 4 4 6 4 4 6 4 6 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 189): 't2^-1', (2, 190): 't2^-1', (2, 184): 't2^-1', (2, 180): 'tau2^-1', (2, 181): 'tau2^-1', (2, 182): 't2^-1*tau1^-1*t3', (2, 183): 't2^-1', (2, 176): 't3', (2, 177): 't3', (2, 168): 'tau2', (2, 169): 't3*tau1^-1*t2^-1', (2, 170): 't3', (2, 171): 't3', (2, 164): 't3^-1', (2, 167): 'tau2', (0, 39): 't1^-1', (2, 163): 't3^-1', (0, 26): 't1^-1', (2, 157): 't3^-1', (2, 158): 't3^-1', (2, 152): 't2^-1', (2, 153): 't2^-1', (1, 95): 't1', (2, 150): 't2^-1', (1, 82): 't1', (2, 144): 't2^-1', (2, 145): 't2^-1', (2, 140): 't2', (2, 143): 'tau1', (2, 9): 't3', (2, 10): 't3', (2, 139): 't2', (2, 130): 'tau1^-1', (0, 182): 'tau3^-1*t1^-1*tau2', (2, 113): 't3', (2, 114): 't3', (1, 173): 'tau2^-1*t1*tau3', (0, 156): 'tau2*t1^-1*tau3^-1', (2, 206): 'tau3', (2, 207): 'tau3', (1, 199): 'tau3*t1*tau2^-1', (2, 203): 't2', (2, 193): 'tau3^-1', (2, 194): 'tau3^-1'}